These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 14661264)
1. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. Hing KA; Best SM; Tanner KE; Bonfield W; Revell PA J Biomed Mater Res A; 2004 Jan; 68(1):187-200. PubMed ID: 14661264 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
3. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842 [TBL] [Abstract][Full Text] [Related]
4. [A comparative morphometric and histologic study of five bone substitute materials]. Chen L; Klaes W; Assenmacher S Zhonghua Yi Xue Za Zhi; 1996 Jul; 76(7):527-30. PubMed ID: 9275505 [TBL] [Abstract][Full Text] [Related]
5. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Hing KA; Revell PA; Smith N; Buckland T Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272 [TBL] [Abstract][Full Text] [Related]
6. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Eggli PS; Müller W; Schenk RK Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207 [TBL] [Abstract][Full Text] [Related]
7. Bone growth in rapid prototyped porous titanium implants. Lopez-Heredia MA; Goyenvalle E; Aguado E; Pilet P; Leroux C; Dorget M; Weiss P; Layrolle P J Biomed Mater Res A; 2008 Jun; 85(3):664-73. PubMed ID: 17876801 [TBL] [Abstract][Full Text] [Related]
8. Bone ingrowth into polymer coated porous synthetic coralline hydroxyapatite. Tencer AF; Woodard PL; Swenson J; Brown KL J Orthop Res; 1987; 5(2):275-82. PubMed ID: 3572596 [TBL] [Abstract][Full Text] [Related]
9. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409 [TBL] [Abstract][Full Text] [Related]
10. MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth. Simon JL; Rekow ED; Thompson VP; Beam H; Ricci JL; Parsons JR J Biomed Mater Res A; 2008 May; 85(2):371-7. PubMed ID: 17688275 [TBL] [Abstract][Full Text] [Related]
11. [Experimental study of bone morphogenetic protein-2 in noncemented fixation of prosthesis]. Wang Y; Wang ST; Cui J; Zhou YG; Mu MW Zhonghua Wai Ke Za Zhi; 2004 Feb; 42(4):240-3. PubMed ID: 15062046 [TBL] [Abstract][Full Text] [Related]
12. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. Ducheyne P; Hench LL; Kagan A; Martens M; Bursens A; Mulier JC J Biomed Mater Res; 1980 May; 14(3):225-37. PubMed ID: 7364787 [TBL] [Abstract][Full Text] [Related]
13. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
14. Demineralized bone matrix in the stabilization of porous-coated implants in bone defects in rabbits. Shen WJ; Chung KC; Wang GJ; Balian G; McLaughlin RE Clin Orthop Relat Res; 1993 Aug; (293):346-52. PubMed ID: 8339502 [TBL] [Abstract][Full Text] [Related]
16. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Galois L; Mainard D Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463 [TBL] [Abstract][Full Text] [Related]
17. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Bobyn JD; Pilliar RM; Cameron HU; Weatherly GC Clin Orthop Relat Res; 1980; (150):263-70. PubMed ID: 7428231 [TBL] [Abstract][Full Text] [Related]
18. Mechanical properties and osteoconductivity of porous bioactive titanium. Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769 [TBL] [Abstract][Full Text] [Related]
19. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896 [TBL] [Abstract][Full Text] [Related]
20. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Jones AC; Arns CH; Hutmacher DW; Milthorpe BK; Sheppard AP; Knackstedt MA Biomaterials; 2009 Mar; 30(7):1440-51. PubMed ID: 19091398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]