These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14661794)

  • 1. Phase recovery from a single undersampled interferogram.
    Muñoz J; Strojnik M; Páez G
    Appl Opt; 2003 Dec; 42(34):6846-52. PubMed ID: 14661794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-Nyquist null aspheric testing using a computer-stored compensator.
    Servin M; Malacara D; Malacara Z; Vlad VI
    Appl Opt; 1994 Jul; 33(19):4103-8. PubMed ID: 20935757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steerable spatial phase shifting applied to single-image closed-fringe interferograms.
    Quiroga JA; Servin M; Estrada JC; Gomez-Pedrero JA
    Appl Opt; 2009 Apr; 48(12):2401-9. PubMed ID: 19381193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial dual-orthogonal (SDO) phase-shifting algorithm by pre-recomposing the interference fringe.
    Wang Y; Li B; Zhong L; Tian J; Lu X
    Opt Express; 2017 Jul; 25(15):17446-17456. PubMed ID: 28789236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularized frequency-stabilizing method for single closed-fringe interferogram demodulation.
    Tian C; Yang Y; Zhang S; Liu D; Luo Y; Zhuo Y
    Opt Lett; 2010 Jun; 35(11):1837-9. PubMed ID: 20517433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct demodulation of closed-fringe interferograms based on active contours.
    Vargas J; Quiroga JA; Belenguer T
    Opt Lett; 2010 Nov; 35(21):3550-2. PubMed ID: 21042346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demodulation of two-shot fringe patterns with random phase shifts by use of orthogonal polynomials and global optimization.
    Tian C; Liu S
    Opt Express; 2016 Feb; 24(4):3202-15. PubMed ID: 26906984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise phase demodulation of single carrier-frequency interferogram by pixel-level Lissajous figure and ellipse fitting.
    Liu F; Wu Y; Wu F; König N; Schmitt R; Wan Y; Xu Y
    Sci Rep; 2018 Jan; 8(1):148. PubMed ID: 29317725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-wavelength interferometry based on the spatial carrier-frequency phase-shifting method.
    Huang L; Lu X; Zhou Y; Tian J; Zhong L
    Appl Opt; 2016 Mar; 55(9):2363-9. PubMed ID: 27140574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial carrier phase-shifting algorithm based on least-squares iteration.
    Xu J; Xu Q; Peng H
    Appl Opt; 2008 Oct; 47(29):5446-53. PubMed ID: 18846188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial carrier interferometry from M temporal phase shifted interferograms: Squeezing Interferometry.
    Servin M; Cywiak M; Malacara-Hernandez D; Estrada JC; Quiroga JA
    Opt Express; 2008 Jun; 16(13):9276-83. PubMed ID: 18575491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy.
    García-Márquez J; Malacara-Hernández D; Servín M
    Appl Opt; 1998 Dec; 37(34):7977-82. PubMed ID: 18301687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation.
    Feng Q; Xu H; Wu Z; You Y; Liu W; Ge S
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase unwrapping through demodulation by use of the regularized phase-tracking technique.
    Servin M; Cuevas FJ; Malacara D; Marroquin JL; Rodriguez-Vera R
    Appl Opt; 1999 Apr; 38(10):1934-41. PubMed ID: 18319748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase reconstruction from undersampled intensity patterns.
    Paez G; Strojnik M
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):46-52. PubMed ID: 10641837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.
    Servin M; Malacara D; Rodriguez-Vera R
    Appl Opt; 1994 May; 33(13):2589-95. PubMed ID: 20885612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hook method: recovery of density information from interferograms distorted by large spatial gradients.
    Mildren RP
    Appl Opt; 1997 Jul; 36(19):4526-34. PubMed ID: 18259246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent, recursive phase reconstruction from noisy, modulated intensity patterns by use of synthetic interferograms.
    Pãâez G; Strojnik M
    Opt Lett; 1998 Mar; 23(6):406-8. PubMed ID: 18084526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast phase extraction of a synthetic wavelength from a dual-wavelength interferogram through Hilbert transformation.
    Xu Y; Liang Y; Zou Y; Shen Q; Xue S; Wang Y; Zhu S
    Appl Opt; 2021 Feb; 60(5):1440-1447. PubMed ID: 33690589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase recovery from a single interferogram with closed fringes by phase unwrapping.
    Muñoz-Maciel J; Casillas-Rodríguez FJ; Mora-González M; Peña-Lecona FG; Duran-Ramírez VM; Gómez-Rosas G
    Appl Opt; 2011 Jan; 50(1):22-7. PubMed ID: 21221155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.