These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14661841)

  • 61. Accurate concentration measurements using surface-enhanced Raman and deuterium exchanged dye pairs.
    Deb SK; Davis B; Ben-Amotz D; Davisson VJ
    Appl Spectrosc; 2008 Sep; 62(9):1001-7. PubMed ID: 18801239
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New 1,2,4-triazole-based azo-azomethine dyes. Part I: synthesis, characterization and spectroscopic studies.
    Khanmohammadi H; Erfantalab M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():39-43. PubMed ID: 22100733
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.
    Quan X; Zhang X; Xu H
    Water Res; 2015 Jul; 78():74-83. PubMed ID: 25912251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of surface-enhanced resonance Raman scattering and fluorescence for detection of a labeled antibody.
    Sabatté G; Keir R; Lawlor M; Black M; Graham D; Smith WE
    Anal Chem; 2008 Apr; 80(7):2351-6. PubMed ID: 18307321
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nondestructive identification for red ink entries of seals by Raman and Fourier transform infrared spectrometry.
    Wang XF; Yu J; Zhang AL; Zhou DW; Xie MX
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():986-94. PubMed ID: 22925974
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis.
    Faulds K; Smith WE; Graham D
    Anal Chem; 2004 Jan; 76(2):412-7. PubMed ID: 14719891
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Coomassie brilliant dyes as surface-enhanced Raman scattering probes for protein-ligand recognitions.
    Han XX; Chen L; Guo J; Zhao B; Ozaki Y
    Anal Chem; 2010 May; 82(10):4102-6. PubMed ID: 20411977
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films.
    Rêgo TV; Cadaval TR; Dotto GL; Pinto LA
    J Colloid Interface Sci; 2013 Dec; 411():27-33. PubMed ID: 24112836
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies.
    Pérez León C; Kador L; Peng B; Thelakkat M
    J Phys Chem B; 2006 May; 110(17):8723-30. PubMed ID: 16640428
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer.
    Ozen AS; Aviyente V; Tezcanli-Güyer G; Ince NH
    J Phys Chem A; 2005 Apr; 109(15):3506-16. PubMed ID: 16833689
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates.
    Yu WW; White IM
    Analyst; 2013 Jul; 138(13):3679-86. PubMed ID: 23671906
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SERRS dyes. Part 3. Synthesis of reactive benzotriazole azo dyes for surface enhanced resonance Raman scattering.
    Enright A; Fruk L; Grondin A; McHugh CJ; Smith WE; Graham D
    Analyst; 2004 Oct; 129(10):975-8. PubMed ID: 15457333
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantitative analysis of methyl green using surface-enhanced resonance Raman scattering.
    Shadi IT; Cheung W; Goodacre R
    Anal Bioanal Chem; 2009 Aug; 394(7):1833-8. PubMed ID: 19544054
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.
    White PC; Munro CH; Smith WE
    Analyst; 1996 Jun; 121(6):835-8. PubMed ID: 8763208
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Relative predominance of azo and hydrazone tautomers of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes in binary solvent mixtures.
    Adegoke OA
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):504-10. PubMed ID: 21943714
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Discovery and structural elucidation of the illegal azo dye Basic Red 46 in sumac spice.
    Ruf J; Walter P; Kandler H; Kaufmann A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(6):897-907. PubMed ID: 22455543
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters.
    McLintock A; Hunt N; Wark AW
    Chem Commun (Camb); 2011 Apr; 47(13):3757-9. PubMed ID: 21298126
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy.
    Gabudean AM; Biro D; Astilean S
    Nanotechnology; 2012 Dec; 23(48):485706. PubMed ID: 23138835
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Surface-enhanced resonance Raman scattering and density functional calculations of hemicyanine adsorbed on colloidal silver surface.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Venkateswaran S; Mukherjee T
    J Phys Chem A; 2006 Feb; 110(5):1805-11. PubMed ID: 16451011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.