These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14662756)

  • 1. A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions.
    Xun L; Webster CM
    J Biol Chem; 2004 Feb; 279(8):6696-700. PubMed ID: 14662756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222.
    Padilla L; Matus V; Zenteno P; González B
    J Basic Microbiol; 2000; 40(4):243-9. PubMed ID: 10986670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134.
    Hayes RP; Webb BN; Subramanian AK; Nissen M; Popchock A; Xun L; Kang C
    Int J Mol Sci; 2012; 13(8):9769-9784. PubMed ID: 22949829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134.
    Louie TM; Webster CM; Xun L
    J Bacteriol; 2002 Jul; 184(13):3492-500. PubMed ID: 12057943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1.
    Wieser M; Wagner B; Eberspächer J; Lingens F
    J Bacteriol; 1997 Jan; 179(1):202-8. PubMed ID: 8981999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient degradation of 2,4,6-Trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4).
    Matus V; Sánchez MA; Martínez M; González B
    Appl Environ Microbiol; 2003 Dec; 69(12):7108-15. PubMed ID: 14660355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.
    Xun L
    J Bacteriol; 1996 May; 178(9):2645-9. PubMed ID: 8626333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100.
    Martin-Le Garrec G; Artaud I; Capeillère-Blandin C
    Biochim Biophys Acta; 2001 Jun; 1547(2):288-301. PubMed ID: 11410285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.
    Belchik SM; Xun L
    J Bacteriol; 2008 Mar; 190(5):1615-9. PubMed ID: 18165297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134.
    Sánchez MA; González B
    Appl Environ Microbiol; 2007 May; 73(9):2769-76. PubMed ID: 17322325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16.
    Yu H; Hausinger RP; Tang HZ; Xu P
    J Biol Chem; 2014 Oct; 289(42):29158-70. PubMed ID: 25172510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1.
    Zaborina O; Latus M; Eberspächer J; Golovleva LA; Lingens F
    J Bacteriol; 1995 Jan; 177(1):229-34. PubMed ID: 7798136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concurrent destruction strategy: NaNO2-catalyzed, trichlorophenol-coupled degradation of p-nitrophenol using molecular oxygen.
    Fu D; Peng Y; Liu R; Zhang F; Liang X
    Chemosphere; 2009 May; 75(6):701-6. PubMed ID: 19272631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a reverse micelle system for study of oligomeric structure of NAD+-reducing hydrogenase from Ralstonia eutropha H16.
    Tikhonova TV; Kurkin SA; Klyachko NL; Popov VO
    Biochemistry (Mosc); 2005 Jun; 70(6):645-51. PubMed ID: 16038606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6.
    Yun CH; Kim KH; Calcutt MW; Guengerich FP
    J Biol Chem; 2005 Apr; 280(13):12279-91. PubMed ID: 15665333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134.
    Pérez-Pantoja D; Donoso RA; Sánchez MA; González B
    Microbiology (Reading); 2009 Nov; 155(Pt 11):3641-3651. PubMed ID: 19684066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.
    Sumithran S; Sono M; Raner GM; Dawson JH
    J Inorg Biochem; 2012 Dec; 117():316-21. PubMed ID: 23102773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase.
    Poater A; Cavallo L
    Inorg Chem; 2009 May; 48(9):4062-6. PubMed ID: 19331376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
    Lauterbach L; Lenz O
    J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
    Pimviriyakul P; Thotsaporn K; Sucharitakul J; Chaiyen P
    J Biol Chem; 2017 Mar; 292(12):4818-4832. PubMed ID: 28159841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.