BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 14662763)

  • 1. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions.
    Basha E; Lee GJ; Breci LA; Hausrath AC; Buan NR; Giese KC; Vierling E
    J Biol Chem; 2004 Feb; 279(9):7566-75. PubMed ID: 14662763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes.
    Friedrich KL; Giese KC; Buan NR; Vierling E
    J Biol Chem; 2004 Jan; 279(2):1080-9. PubMed ID: 14573605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.
    Mogk A; Schlieker C; Friedrich KL; Schönfeld HJ; Vierling E; Bukau B
    J Biol Chem; 2003 Aug; 278(33):31033-42. PubMed ID: 12788951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro.
    Giese KC; Vierling E
    J Biol Chem; 2002 Nov; 277(48):46310-8. PubMed ID: 12297515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates.
    Obuchowski I; Piróg A; Stolarska M; Tomiczek B; Liberek K
    PLoS Genet; 2019 Oct; 15(10):e1008479. PubMed ID: 31652260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
    Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B
    EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of the two zinc binding sites in DnaJ.
    Linke K; Wolfram T; Bussemer J; Jakob U
    J Biol Chem; 2003 Nov; 278(45):44457-66. PubMed ID: 12941935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small heat-shock proteins function in the insoluble protein complex.
    Jiao W; Li P; Zhang J; Zhang H; Chang Z
    Biochem Biophys Res Commun; 2005 Sep; 335(1):227-31. PubMed ID: 16055090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity.
    Giese KC; Basha E; Catague BY; Vierling E
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18896-901. PubMed ID: 16365319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial molecular chaperones.
    Lund PA
    Adv Microb Physiol; 2001; 44():93-140. PubMed ID: 11407116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.
    Mogk A; Deuerling E; Vorderwülbecke S; Vierling E; Bukau B
    Mol Microbiol; 2003 Oct; 50(2):585-95. PubMed ID: 14617181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone function and mechanism of small heat-shock proteins.
    Fu X
    Acta Biochim Biophys Sin (Shanghai); 2014 May; 46(5):347-56. PubMed ID: 24449783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immediate response of the DnaK molecular chaperone system to heat shock.
    Siegenthaler RK; Grimshaw JP; Christen P
    FEBS Lett; 2004 Mar; 562(1-3):105-10. PubMed ID: 15044009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding.
    Shi X; Yan L; Zhang H; Sun K; Chang Z; Fu X
    Biochem Biophys Res Commun; 2014 Sep; 452(3):402-7. PubMed ID: 25173932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Basha E; Wysocki VH; Vierling E
    J Biol Chem; 2008 Sep; 283(39):26634-42. PubMed ID: 18621732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.