These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Zaidi N; Royaux I; Swinnen JV; Smans K Mol Cancer Ther; 2012 Sep; 11(9):1925-35. PubMed ID: 22718913 [TBL] [Abstract][Full Text] [Related]
3. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice. Yenilmez B; Kelly M; Zhang GF; Wetoska N; Ilkayeva OR; Min K; Rowland L; DiMarzio C; He W; Raymond N; Lifshitz L; Pan M; Han X; Xie J; Friedline RH; Kim JK; Gao G; Herman MA; Newgard CB; Czech MP J Biol Chem; 2022 Oct; 298(10):102401. PubMed ID: 35988648 [TBL] [Abstract][Full Text] [Related]
4. ACSS2-mediated acetyl-CoA synthesis from acetate is necessary for human cytomegalovirus infection. Vysochan A; Sengupta A; Weljie AM; Alwine JC; Yu Y Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1528-E1535. PubMed ID: 28167750 [TBL] [Abstract][Full Text] [Related]
5. Polyamine regulating protein antizyme binds to ATP citrate lyase to accelerate acetyl-CoA production in cancer cells. Tajima A; Murai N; Murakami Y; Iwamoto T; Migita T; Matsufuji S Biochem Biophys Res Commun; 2016 Mar; 471(4):646-51. PubMed ID: 26915799 [TBL] [Abstract][Full Text] [Related]
6. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. Zhao S; Torres A; Henry RA; Trefely S; Wallace M; Lee JV; Carrer A; Sengupta A; Campbell SL; Kuo YM; Frey AJ; Meurs N; Viola JM; Blair IA; Weljie AM; Metallo CM; Snyder NW; Andrews AJ; Wellen KE Cell Rep; 2016 Oct; 17(4):1037-1052. PubMed ID: 27760311 [TBL] [Abstract][Full Text] [Related]
7. Mammalian SIRT6 Represses Invasive Cancer Cell Phenotypes through ATP Citrate Lyase (ACLY)-Dependent Histone Acetylation. Zheng W; Tasselli L; Li TM; Chua KF Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573442 [TBL] [Abstract][Full Text] [Related]
8. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Zhao S; Jang C; Liu J; Uehara K; Gilbert M; Izzo L; Zeng X; Trefely S; Fernandez S; Carrer A; Miller KD; Schug ZT; Snyder NW; Gade TP; Titchenell PM; Rabinowitz JD; Wellen KE Nature; 2020 Mar; 579(7800):586-591. PubMed ID: 32214246 [TBL] [Abstract][Full Text] [Related]
9. Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. Namgaladze D; Zukunft S; Schnütgen F; Kurrle N; Fleming I; Fuhrmann D; Brüne B Front Immunol; 2018; 9():2858. PubMed ID: 30568658 [TBL] [Abstract][Full Text] [Related]
10. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. Lee JH; Jang H; Lee SM; Lee JE; Choi J; Kim TW; Cho EJ; Youn HD FEBS J; 2015 Jan; 282(2):361-71. PubMed ID: 25367309 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis for acetyl-CoA production by ATP-citrate lyase. Wei X; Schultz K; Bazilevsky GA; Vogt A; Marmorstein R Nat Struct Mol Biol; 2020 Jan; 27(1):33-41. PubMed ID: 31873304 [TBL] [Abstract][Full Text] [Related]
12. ATP-citrate lyase multimerization is required for coenzyme-A substrate binding and catalysis. Bazilevsky GA; Affronti HC; Wei X; Campbell SL; Wellen KE; Marmorstein R J Biol Chem; 2019 May; 294(18):7259-7268. PubMed ID: 30877197 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Role of ATP-Citrate Lyase in the Immune System. Dominguez M; Brüne B; Namgaladze D Front Immunol; 2021; 12():632526. PubMed ID: 33679780 [TBL] [Abstract][Full Text] [Related]
14. Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. Xu H; Luo J; Ma G; Zhang X; Yao D; Li M; Loor JJ J Cell Physiol; 2018 Feb; 233(2):1005-1016. PubMed ID: 28407230 [TBL] [Abstract][Full Text] [Related]
15. ACLY and ACSS2 link nutrient-dependent chromatin accessibility to CD8 T cell effector responses. Kaymak I; Watson MJ; Oswald BM; Ma S; Johnson BK; DeCamp LM; Mabvakure BM; Luda KM; Ma EH; Lau K; Fu Z; Muhire B; Kitchen-Goosen SM; Vander Ark A; Dahabieh MS; Samborska B; Vos M; Shen H; Fan ZP; Roddy TP; Kingsbury GA; Sousa CM; Krawczyk CM; Williams KS; Sheldon RD; Kaech SM; Roy DG; Jones RG J Exp Med; 2024 Sep; 221(9):. PubMed ID: 39150482 [TBL] [Abstract][Full Text] [Related]
16. Inter-organelle cross-talk supports acetyl-coenzyme A homeostasis and lipogenesis under metabolic stress. Kuna RS; Kumar A; Wessendorf-Rodriguez KA; Galvez H; Green CR; McGregor GH; Cordes T; Shaw RJ; Svensson RU; Metallo CM Sci Adv; 2023 May; 9(18):eadf0138. PubMed ID: 37134162 [TBL] [Abstract][Full Text] [Related]
18. Active post-transcriptional regulation and ACLY-mediated acetyl-CoA synthesis as a pivotal target of Shuang-Huang-Sheng-Bai formula for lung adenocarcinoma treatment. Liu D; Dong C; Wang F; Liu W; Jin X; Qi SL; Liu L; Jin Q; Wang S; Wu J; Wang C; Yang J; Deng H; Cai Y; Yang L; Qin J; Zhang C; Yang X; Wang MS; Yu G; Xue YW; Wang Z; Ge GB; Xu Z; Chen WL Phytomedicine; 2023 May; 113():154732. PubMed ID: 36933457 [TBL] [Abstract][Full Text] [Related]
20. In Steatotic Cells, ATP-Citrate Lyase mRNA Is Efficiently Translated through a Cap-Independent Mechanism, Contributing to the Stimulation of De Novo Lipogenesis. Siculella L; Giannotti L; Testini M; Gnoni GV; Damiano F Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]