BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 14663075)

  • 1. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon.
    Gaballa A; Cao M; Helmann JD
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CsoR regulates the copper efflux operon copZA in Bacillus subtilis.
    Smaldone GT; Helmann JD
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4123-4128. PubMed ID: 18048925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect regulation of the ycnKJI operon involved in copper uptake through two transcriptional repressors, YcnK and CsoR, in Bacillus subtilis.
    Hirooka K; Edahiro T; Kimura K; Fujita Y
    J Bacteriol; 2012 Oct; 194(20):5675-87. PubMed ID: 22904286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems.
    Gaballa A; Helmann JD
    Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR.
    Petersen C; Møller LB
    Gene; 2000 Dec; 261(2):289-98. PubMed ID: 11167016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA.
    Stoyanov JV; Hobman JL; Brown NL
    Mol Microbiol; 2001 Jan; 39(2):502-11. PubMed ID: 11136469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR.
    Outten FW; Outten CE; Hale J; O'Halloran TV
    J Biol Chem; 2000 Oct; 275(40):31024-9. PubMed ID: 10915804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper Efflux System Required in Murine Lung Infection by Haemophilus influenzae Composed of a Canonical ATPase Gene and Tandem Chaperone Gene Copies.
    Wong SM; Gawronski J; Akerley BJ
    Infect Immun; 2023 May; 91(5):e0009123. PubMed ID: 37014212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida.
    Adaikkalam V; Swarup S
    Microbiology (Reading); 2002 Sep; 148(Pt 9):2857-2867. PubMed ID: 12213931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis.
    Ma Z; Cowart DM; Scott RA; Giedroc DP
    Biochemistry; 2009 Apr; 48(15):3325-34. PubMed ID: 19249860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons.
    Helmann JD; Wang Y; Mahler I; Walsh CT
    J Bacteriol; 1989 Jan; 171(1):222-9. PubMed ID: 2492496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis.
    Huang SC; Lin TH; Shaw GC
    Microbiology (Reading); 2011 Dec; 157(Pt 12):3370-3377. PubMed ID: 21964733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated.
    Ahmed M; Lyass L; Markham PN; Taylor SS; Vázquez-Laslop N; Neyfakh AA
    J Bacteriol; 1995 Jul; 177(14):3904-10. PubMed ID: 7608059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal.
    Harvie DR; Andreini C; Cavallaro G; Meng W; Connolly BA; Yoshida K; Fujita Y; Harwood CR; Radford DS; Tottey S; Cavet JS; Robinson NJ
    Mol Microbiol; 2006 Feb; 59(4):1341-56. PubMed ID: 16430705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of bacillus subtilis (natto) plasmid pLS32.
    Tanaka T
    J Bacteriol; 2010 Mar; 192(5):1221-30. PubMed ID: 20023009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the Bacillus subtilis pur operon repressor.
    Weng M; Nagy PL; Zalkin H
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7455-9. PubMed ID: 7638212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes.
    Corbett D; Schuler S; Glenn S; Andrew PW; Cavet JS; Roberts IS
    Mol Microbiol; 2011 Jul; 81(2):457-72. PubMed ID: 21564342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M; Gardan R; Arnaud M; Rapoport G
    J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.