These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 14663492)
1. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Vivas A; Azcón R; Biró B; Barea JM; Ruiz-Lozano JM Can J Microbiol; 2003 Oct; 49(10):577-88. PubMed ID: 14663492 [TBL] [Abstract][Full Text] [Related]
2. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Vivas A; Biró B; Ruíz-Lozano JM; Barea JM; Azcón R Chemosphere; 2006 Mar; 62(9):1523-33. PubMed ID: 16098559 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chen X; Wu C; Tang J; Hu S Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805 [TBL] [Abstract][Full Text] [Related]
4. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Vivas A; Barea JM; Azcón R Environ Pollut; 2005 Mar; 134(2):257-66. PubMed ID: 15589653 [TBL] [Abstract][Full Text] [Related]
5. Application of Aspergillus niger-treated agrowaste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cd-contaminated soil. Medina A; Vassilev N; Barea JM; Azcón R J Biotechnol; 2005 Apr; 116(4):369-78. PubMed ID: 15748763 [TBL] [Abstract][Full Text] [Related]
6. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Dong Y; Zhu YG; Smith FA; Wang Y; Chen B Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670 [TBL] [Abstract][Full Text] [Related]
7. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Azcón R; Medina A; Roldán A; Biró B; Vivas A Chemosphere; 2009 Apr; 75(3):327-34. PubMed ID: 19185328 [TBL] [Abstract][Full Text] [Related]
8. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Arriagada CA; Herrera MA; Ocampo JA J Environ Manage; 2007 Jul; 84(1):93-9. PubMed ID: 16837125 [TBL] [Abstract][Full Text] [Related]
9. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Carrasco L; Azcón R; Kohler J; Roldán A; Caravaca F Sci Total Environ; 2011 Feb; 409(6):1205-9. PubMed ID: 21211827 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L.). Chen XH; Zhao B Chemosphere; 2007 Jul; 68(8):1548-55. PubMed ID: 17475308 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Audet P; Charest C Environ Pollut; 2007 Jun; 147(3):609-14. PubMed ID: 17118259 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Vivas A; Barea JM; Biró B; Azcón R J Appl Microbiol; 2006 Mar; 100(3):587-98. PubMed ID: 16478498 [TBL] [Abstract][Full Text] [Related]
13. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Vivas A; Vörös I; Biró B; Campos E; Barea JM; Azcón R Environ Pollut; 2003; 126(2):179-89. PubMed ID: 12927489 [TBL] [Abstract][Full Text] [Related]
14. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [TBL] [Abstract][Full Text] [Related]
15. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba. Zhang XH; Lin AJ; Chen BD; Wang YS; Smith SE; Smith FA J Environ Sci (China); 2006; 18(4):721-6. PubMed ID: 17078551 [TBL] [Abstract][Full Text] [Related]
16. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640 [TBL] [Abstract][Full Text] [Related]
17. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Punamiya P; Datta R; Sarkar D; Barber S; Patel M; Das P J Hazard Mater; 2010 May; 177(1-3):465-74. PubMed ID: 20061082 [TBL] [Abstract][Full Text] [Related]
18. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Li Y; Peng J; Shi P; Zhao B Chemosphere; 2009 May; 75(7):894-9. PubMed ID: 19232430 [TBL] [Abstract][Full Text] [Related]
19. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Wu N; Huang H; Zhang S; Zhu YG; Christie P; Zhang Y Environ Pollut; 2009 May; 157(5):1613-8. PubMed ID: 19168268 [TBL] [Abstract][Full Text] [Related]
20. Microbial processes in the rhizosphere soil of a heavy metals-contaminated Mediterranean salt marsh: a facilitating role of AM fungi. Carrasco L; Caravaca F; Alvarez-Rogel J; Roldán A Chemosphere; 2006 Jun; 64(1):104-11. PubMed ID: 16403557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]