BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 14663829)

  • 1. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T; Dulau L; Julien A; Blondin B
    Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T; Postaire O; Storaï J; Blondin B
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):699-712. PubMed ID: 16607525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S; Pérez-Ortín JE
    Yeast; 2000 Jan; 16(2):139-48. PubMed ID: 10641036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation.
    Jiménez-Martí E; del Olmo ML
    FEMS Yeast Res; 2008 Mar; 8(2):245-56. PubMed ID: 17986253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F; Carrasco P; Pérez-Ortín JE; del Olmo Ml; Aranda A
    Int J Food Microbiol; 2007 Feb; 114(1):83-91. PubMed ID: 17187885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed.
    Perez M; Luyten K; Michel R; Riou C; Blondin B
    FEMS Yeast Res; 2005 Feb; 5(4-5):351-61. PubMed ID: 15691740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast.
    Novo MT; Beltran G; Rozès N; Guillamón JM; Mas A
    Appl Microbiol Biotechnol; 2005 Feb; 66(5):560-6. PubMed ID: 15375634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Mendes-Faia A; Pérez-Ortín JE; Leão C
    Appl Environ Microbiol; 2007 May; 73(9):3049-60. PubMed ID: 17337556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A; del Olmo ML
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen and carbon source-regulated expression of PDC and ADH genes in the respiratory yeast Pichia anomala.
    Fredlund E; Beerlage C; Melin P; Schnürer J; Passoth V
    Yeast; 2006 Dec; 23(16):1137-49. PubMed ID: 17133621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation.
    Novo M; Beltran G; Rozes N; Guillamon JM; Sokol S; Leberre V; François J; Mas A
    FEMS Yeast Res; 2007 Mar; 7(2):304-16. PubMed ID: 17132143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations.
    Beltran G; Novo M; Leberre V; Sokol S; Labourdette D; Guillamon JM; Mas A; François J; Rozes N
    FEMS Yeast Res; 2006 Dec; 6(8):1167-83. PubMed ID: 17156014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.
    Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J
    Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R; Baiges I; Mas A; Guillamon JM
    J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.