BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 14664579)

  • 1. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase.
    Aguey-Zinsou KF; Bernhardt PV; Leimkühler S
    J Am Chem Soc; 2003 Dec; 125(50):15352-8. PubMed ID: 14664579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans.
    Leimkuhler S; Hodson R; George GN; Rajagopalan KV
    J Biol Chem; 2003 Jun; 278(23):20802-11. PubMed ID: 12670960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine dehydrogenase electrocatalysis: autocatalysis and novel activity.
    Kalimuthu P; Leimkühler S; Bernhardt PV
    J Phys Chem B; 2011 Mar; 115(11):2655-62. PubMed ID: 21361328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic electrochemistry of xanthine dehydrogenase.
    Kalimuthu P; Leimkühler S; Bernhardt PV
    J Phys Chem B; 2012 Sep; 116(38):11600-7. PubMed ID: 22934570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine.
    Kalimuthu P; Leimkühler S; Bernhardt PV
    Anal Chem; 2012 Dec; 84(23):10359-65. PubMed ID: 23134312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of assembly and cofactor insertion into Rhodobacter capsulatus xanthine dehydrogenase.
    Schumann S; Saggu M; Möller N; Anker SD; Lendzian F; Hildebrandt P; Leimkühler S
    J Biol Chem; 2008 Jun; 283(24):16602-11. PubMed ID: 18390908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase.
    Leimkühler S; Stockert AL; Igarashi K; Nishino T; Hille R
    J Biol Chem; 2004 Sep; 279(39):40437-44. PubMed ID: 15265866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus.
    Truglio JJ; Theis K; Leimkühler S; Rappa R; Rajagopalan KV; Kisker C
    Structure; 2002 Jan; 10(1):115-25. PubMed ID: 11796116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials.
    Hunt J; Massey V; Dunham WR; Sands RH
    J Biol Chem; 1993 Sep; 268(25):18685-91. PubMed ID: 8395516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes.
    Leimkühler S; Kern M; Solomon PS; McEwan AG; Schwarz G; Mendel RR; Klipp W
    Mol Microbiol; 1998 Feb; 27(4):853-69. PubMed ID: 9515710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Substrate and Inhibitor Binding of Rhodobacter capsulatus Xanthine Dehydrogenase.
    Dietzel U; Kuper J; Doebbler JA; Schulte A; Truglio JJ; Leimkühler S; Kisker C
    J Biol Chem; 2009 Mar; 284(13):8768-76. PubMed ID: 19109249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate.
    Wu Y; Hu S
    Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Rhodobacter capsulatus L-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase.
    Neumann M; Stöcklein W; Walburger A; Magalon A; Leimkühler S
    Biochemistry; 2007 Aug; 46(33):9586-95. PubMed ID: 17649978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase.
    Neumann M; Schulte M; Jünemann N; Stöcklein W; Leimkühler S
    J Biol Chem; 2006 Jun; 281(23):15701-8. PubMed ID: 16597619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes.
    Boll M; Fuchs G; Meier C; Trautwein A; El Kasmi A; Ragsdale SW; Buchanan G; Lowe DJ
    J Biol Chem; 2001 Dec; 276(51):47853-62. PubMed ID: 11602591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus.
    Leimkühler S; Klipp W
    J Bacteriol; 1999 May; 181(9):2745-51. PubMed ID: 10217763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs.
    Barber MJ; Trimboli AJ; Nomikos S; Smith ET
    Arch Biochem Biophys; 1997 Sep; 345(1):88-96. PubMed ID: 9281315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase.
    Asai R; Nishino T; Matsumura T; Okamoto K; Igarashi K; Pai EF; Nishino T
    J Biochem; 2007 Apr; 141(4):525-34. PubMed ID: 17301076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.
    Hall J; Reschke S; Cao H; Leimkühler S; Hille R
    J Biol Chem; 2014 Nov; 289(46):32121-32130. PubMed ID: 25258317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrochemistry of a bacterial sulfite dehydrogenase.
    Aguey-Zinsou KF; Bernhardt PV; Kappler U; McEwan AG
    J Am Chem Soc; 2003 Jan; 125(2):530-5. PubMed ID: 12517167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.