These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Deacon CF; Knudsen LB; Madsen K; Wiberg FC; Jacobsen O; Holst JJ Diabetologia; 1998 Mar; 41(3):271-8. PubMed ID: 9541166 [TBL] [Abstract][Full Text] [Related]
6. Lys9 for Glu9 substitution in glucagon-like peptide-1(7-36)amide confers dipeptidylpeptidase IV resistance with cellular and metabolic actions similar to those of established antagonists glucagon-like peptide-1(9-36)amide and exendin (9-39). Green BD; Mooney MH; Gault VA; Irwin N; Bailey CJ; Harriott P; Greer B; Flatt PR; O'Harte FP Metabolism; 2004 Feb; 53(2):252-9. PubMed ID: 14767880 [TBL] [Abstract][Full Text] [Related]
7. Degradation and glycemic effects of His(7)-glucitol glucagon-like peptide-1(7-36)amide in obese diabetic ob/ob mice. O'Harte FP; Mooney MH; Kelly CM; McKillop AM; Flatt PR Regul Pept; 2001 Jan; 96(3):95-104. PubMed ID: 11111014 [TBL] [Abstract][Full Text] [Related]
8. Comparative effects of GLP-1 and GIP on cAMP production, insulin secretion, and in vivo antidiabetic actions following substitution of Ala8/Ala2 with 2-aminobutyric acid. Green BD; Gault VA; Flatt PR; Harriott P; Greer B; O'Harte FP Arch Biochem Biophys; 2004 Aug; 428(2):136-43. PubMed ID: 15246869 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Green BD; Gault VA; O'Harte FP; Flatt PR Diabetes Obes Metab; 2005 Sep; 7(5):595-604. PubMed ID: 16050953 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. Green BD; Irwin N; Duffy NA; Gault VA; O'harte FP; Flatt PR Eur J Pharmacol; 2006 Oct; 547(1-3):192-9. PubMed ID: 16945366 [TBL] [Abstract][Full Text] [Related]
11. Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo. Gault VA; O'Harte FP; Harriott P; Flatt PR Metabolism; 2003 Jun; 52(6):679-87. PubMed ID: 12800091 [TBL] [Abstract][Full Text] [Related]
12. Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Gault VA; O'Harte FP; Harriott P; Mooney MH; Green BD; Flatt PR Diabetologia; 2003 Feb; 46(2):222-30. PubMed ID: 12627321 [TBL] [Abstract][Full Text] [Related]
13. Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes. Gault VA; Flatt PR; Bailey CJ; Harriott P; Greer B; Mooney MH; O'harte FP Biochem J; 2002 Nov; 367(Pt 3):913-20. PubMed ID: 12150711 [TBL] [Abstract][Full Text] [Related]
14. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Bhat VK; Kerr BD; Vasu S; Flatt PR; Gault VA Diabetologia; 2013 Jun; 56(6):1417-24. PubMed ID: 23503814 [TBL] [Abstract][Full Text] [Related]
15. Engineered beta-cells secreting dipeptidyl peptidase IV-resistant glucagon-like peptide-1 show enhanced glucose-responsiveness. Islam MS; Rahman SA; Mirzaei Z; Islam KB Life Sci; 2005 Jan; 76(11):1239-48. PubMed ID: 15642594 [TBL] [Abstract][Full Text] [Related]
16. N-terminal acetylation protects glucagon-like peptide GLP-1-(7-34)-amide from DPP-IV-mediated degradation retaining cAMP- and insulin-releasing capacity. John H; Maronde E; Forssmann WG; Meyer M; Adermann K Eur J Med Res; 2008 Feb; 13(2):73-8. PubMed ID: 18424366 [TBL] [Abstract][Full Text] [Related]
17. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Kim JG; Baggio LL; Bridon DP; Castaigne JP; Robitaille MF; Jetté L; Benquet C; Drucker DJ Diabetes; 2003 Mar; 52(3):751-9. PubMed ID: 12606517 [TBL] [Abstract][Full Text] [Related]
18. [Ser2]- and [SerP2] incretin analogs: comparison of dipeptidyl peptidase IV resistance and biological activities in vitro and in vivo. Hinke SA; Manhart S; Kühn-Wache K; Nian C; Demuth HU; Pederson RA; McIntosh CH J Biol Chem; 2004 Feb; 279(6):3998-4006. PubMed ID: 14610075 [TBL] [Abstract][Full Text] [Related]
19. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. Gault VA; Bhat VK; Irwin N; Flatt PR J Biol Chem; 2013 Dec; 288(49):35581-91. PubMed ID: 24165127 [TBL] [Abstract][Full Text] [Related]
20. Effects of antidiabetic drugs on dipeptidyl peptidase IV activity: nateglinide is an inhibitor of DPP IV and augments the antidiabetic activity of glucagon-like peptide-1. Duffy NA; Green BD; Irwin N; Gault VA; McKillop AM; O'Harte FP; Flatt PR Eur J Pharmacol; 2007 Jul; 568(1-3):278-86. PubMed ID: 17573070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]