These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 14664796)
1. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Ziady AG; Gedeon CR; Miller T; Quan W; Payne JM; Hyatt SL; Fink TL; Muhammad O; Oette S; Kowalczyk T; Pasumarthy MK; Moen RC; Cooper MJ; Davis PB Mol Ther; 2003 Dec; 8(6):936-47. PubMed ID: 14664796 [TBL] [Abstract][Full Text] [Related]
2. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Ziady AG; Gedeon CR; Muhammad O; Stillwell V; Oette SM; Fink TL; Quan W; Kowalczyk TH; Hyatt SL; Payne J; Peischl A; Seng JE; Moen RC; Cooper MJ; Davis PB Mol Ther; 2003 Dec; 8(6):948-56. PubMed ID: 14664797 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Boylan NJ; Kim AJ; Suk JS; Adstamongkonkul P; Simons BW; Lai SK; Cooper MJ; Hanes J Biomaterials; 2012 Mar; 33(7):2361-71. PubMed ID: 22182747 [TBL] [Abstract][Full Text] [Related]
4. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Fink TL; Klepcyk PJ; Oette SM; Gedeon CR; Hyatt SL; Kowalczyk TH; Moen RC; Cooper MJ Gene Ther; 2006 Jul; 13(13):1048-51. PubMed ID: 16525478 [TBL] [Abstract][Full Text] [Related]
5. Preparation and analysis of PEGylated poly-L-lysine DNA nanoparticles for gene delivery. Davis PB; Kowalczyk TH Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.prot5419. PubMed ID: 20439407 [TBL] [Abstract][Full Text] [Related]
6. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Kaul G; Amiji M Pharm Res; 2005 Jun; 22(6):951-61. PubMed ID: 15948039 [TBL] [Abstract][Full Text] [Related]
7. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Suk JS; Boylan NJ; Trehan K; Tang BC; Schneider CS; Lin JM; Boyle MP; Zeitlin PL; Lai SK; Cooper MJ; Hanes J Mol Ther; 2011 Nov; 19(11):1981-9. PubMed ID: 21829177 [TBL] [Abstract][Full Text] [Related]
8. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. Suk JS; Kim AJ; Trehan K; Schneider CS; Cebotaru L; Woodward OM; Boylan NJ; Boyle MP; Lai SK; Guggino WB; Hanes J J Control Release; 2014 Mar; 178():8-17. PubMed ID: 24440664 [TBL] [Abstract][Full Text] [Related]
9. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. Ferkol T; Perales JC; Eckman E; Kaetzel CS; Hanson RW; Davis PB J Clin Invest; 1995 Feb; 95(2):493-502. PubMed ID: 7860731 [TBL] [Abstract][Full Text] [Related]
10. Poly (D, L-lactide-co-glycolide)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo. Stern M; Ulrich K; Geddes DM; Alton EW Gene Ther; 2003 Aug; 10(16):1282-8. PubMed ID: 12883524 [TBL] [Abstract][Full Text] [Related]
11. Bioluminescent imaging of reporter gene expression in the lungs of wildtype and model mice following the administration of PEG-stabilized DNA nanoparticles. Ziady AG; Kotlarchyk M; Bryant L; McShane M; Lee Z Microsc Res Tech; 2010 Sep; 73(9):918-28. PubMed ID: 20306536 [TBL] [Abstract][Full Text] [Related]
12. Nonionic amphiphilic block copolymers promote gene transfer to the lung. Desigaux L; Gourden C; Bello-Roufaï M; Richard P; Oudrhiri N; Lehn P; Escande D; Pollard H; Pitard B Hum Gene Ther; 2005 Jul; 16(7):821-9. PubMed ID: 16000064 [TBL] [Abstract][Full Text] [Related]
13. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Kukowska-Latallo JF; Raczka E; Quintana A; Chen C; Rymaszewski M; Baker JR Hum Gene Ther; 2000 Jul; 11(10):1385-95. PubMed ID: 10910136 [TBL] [Abstract][Full Text] [Related]
14. Defining strategies to extend duration of gene expression from targeted compacted DNA vectors. Ziady AG; Kim J; Colla J; Davis PB Gene Ther; 2004 Sep; 11(18):1378-90. PubMed ID: 15269710 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Walsh M; Tangney M; O'Neill MJ; Larkin JO; Soden DM; McKenna SL; Darcy R; O'Sullivan GC; O'Driscoll CM Mol Pharm; 2006; 3(6):644-53. PubMed ID: 17140252 [TBL] [Abstract][Full Text] [Related]
16. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid-mediated gene transfer. Yoshimura K; Rosenfeld MA; Nakamura H; Scherer EM; Pavirani A; Lecocq JP; Crystal RG Nucleic Acids Res; 1992 Jun; 20(12):3233-40. PubMed ID: 1377820 [TBL] [Abstract][Full Text] [Related]
17. Utilization of modified surfactant-associated protein B for delivery of DNA to airway cells in culture. Baatz JE; Bruno MD; Ciraolo PJ; Glasser SW; Stripp BR; Smyth KL; Korfhagen TR Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2547-51. PubMed ID: 8146151 [TBL] [Abstract][Full Text] [Related]
18. Repression of GAD autoantigen expression in pancreas beta-Cells by delivery of antisense plasmid/PEG-g-PLL complex. Lee M; Han SO; Ko KS; Koh JJ; Park JS; Yoon JW; Kim SW Mol Ther; 2001 Oct; 4(4):339-46. PubMed ID: 11592837 [TBL] [Abstract][Full Text] [Related]
19. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. Ziady AG; Ferkol T; Dawson DV; Perlmutter DH; Davis PB J Biol Chem; 1999 Feb; 274(8):4908-16. PubMed ID: 9988733 [TBL] [Abstract][Full Text] [Related]
20. Enhanced expressions and histological characteristics of intravenously administered plasmid DNA in rat lung. Rha SJ; Wang YP J Korean Med Sci; 2001 Oct; 16(5):567-72. PubMed ID: 11641524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]