These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 14664853)

  • 1. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy.
    Kurková M; Klika Z; Kliková C; Havel J
    Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals.
    Chien SW; Wang MC; Huang CC; Seshaiah K
    J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable radicals formation in coals undergoing weathering: effect of coal rank.
    Green U; Aizenshtat Z; Ruthstein S; Cohen H
    Phys Chem Chem Phys; 2012 Oct; 14(37):13046-52. PubMed ID: 22886081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions.
    Zhou L; Yuan L; Zhao B; Li Y; Lin Z
    PLoS One; 2019; 14(5):e0217469. PubMed ID: 31150428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the binding of iron(II) to humic substances derived from a compost sample by a colorimetric method using ferrozine.
    Yamamoto M; Nishida A; Otsuka K; Komai T; Fukushima M
    Bioresour Technol; 2010 Jun; 101(12):4456-60. PubMed ID: 20163958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of metal ions on lignite and the derived humic substances.
    Havelcová M; Mizera J; Sýkorová I; Pekar M
    J Hazard Mater; 2009 Jan; 161(1):559-64. PubMed ID: 18490104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of pH-fractionated humic acids derived from Chinese weathered coal.
    Zhang S; Yuan L; Li W; Lin Z; Li Y; Hu S; Zhao B
    Chemosphere; 2017 Jan; 166():334-342. PubMed ID: 27700997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.
    Cao X; Drosos M; Leenheer JA; Mao J
    Environ Sci Technol; 2016 Feb; 50(4):1663-9. PubMed ID: 26836017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc.
    Chang Chien SW; Wang MC; Huang CC
    Chemosphere; 2006 Aug; 64(8):1353-61. PubMed ID: 16490235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.
    Lorenc-Grabowska E; Gryglewicz G
    J Colloid Interface Sci; 2005 Apr; 284(2):416-23. PubMed ID: 15780277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of soluble acids from oxidative-hydrolytic breakdown of coal in the development of the fibrous process in anthracosis.
    Kukharenko TA; Dinkelis SS; Yershova NN; Shkutin AE
    J Hyg Epidemiol Microbiol Immunol; 1988; 32(3):249-56. PubMed ID: 2974051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation/solubilization of Chinese lignite by Penicillium sp. P6.
    Yuan HL; Yang JS; Wang FQ; Chen WX
    Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of cesium, cobalt and europium on low-rank coal and chitosan.
    Mizera J; Mizerová G; Machovic V; Borecká L
    Water Res; 2007 Feb; 41(3):620-6. PubMed ID: 17188322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths.
    Gezici O; Demir I; Demircan A; Unlü N; Karaarslan M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():63-9. PubMed ID: 22652543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal ions on the indigenous radicals of humic acids: high field electron paramagnetic resonance study.
    Christoforidis KC; Un S; Deligiannakis Y
    Environ Sci Technol; 2010 Sep; 44(18):7011-6. PubMed ID: 20715767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased conformational rigidity of humic substances by oxidative biomimetic catalysis.
    Piccolo A; Conte P; Tagliatesta P
    Biomacromolecules; 2005; 6(1):351-8. PubMed ID: 15638539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.