BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 14664866)

  • 1. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications.
    Freitas H; Prasad MN; Pratas J
    Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal.
    Pratas J; Favas PJ; D'Souza R; Varun M; Paul MS
    Chemosphere; 2013 Feb; 90(8):2216-25. PubMed ID: 23098582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.
    Rashed MN
    J Hazard Mater; 2010 Jun; 178(1-3):739-46. PubMed ID: 20188467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.
    Kassaye YA; Skipperud L; Meland S; Dadebo E; Einset J; Salbu B
    J Environ Monit; 2012 Oct; 14(10):2698-709. PubMed ID: 22907177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators.
    Alvarenga P; Palma P; de Varennes A; Cunha-Queda AC
    Environ Pollut; 2012 Feb; 161():50-6. PubMed ID: 22230067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd.
    Pastor J; Aparicio AM; Gutierrez-Maroto A; Hernández AJ
    Sci Total Environ; 2007 May; 378(1-2):114-8. PubMed ID: 17307245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings.
    Forsberg LS; Ledin S
    Sci Total Environ; 2006 Apr; 358(1-3):21-35. PubMed ID: 15990158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).
    Antonijević MM; Dimitrijević MD; Milić SM; Nujkić MM
    J Environ Monit; 2012 Mar; 14(3):866-77. PubMed ID: 22314513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne.
    Santibáñez C; Verdugo C; Ginocchio R
    Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.
    Santos ES; Abreu MM; Saraiva JA
    Environ Pollut; 2016 Jun; 213():43-52. PubMed ID: 26874874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.
    Yanqun Z; Yuan L; Schvartz C; Langlade L; Fan L
    Environ Int; 2004 Jun; 30(4):567-76. PubMed ID: 15031017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.