These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14665431)

  • 1. Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Kemner S; Venkatachalam MA; Nissim I; Weinberg JM
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F749-59. PubMed ID: 14665431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury.
    Weinberg JM; Venkatachalam MA; Roeser NF; Saikumar P; Dong Z; Senter RA; Nissim I
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F927-43. PubMed ID: 11053054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Weinberg JM
    Am J Physiol Renal Physiol; 2006 Feb; 290(2):F465-77. PubMed ID: 16159894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation.
    Bienholz A; Al-Taweel A; Roeser NF; Kribben A; Feldkamp T; Weinberg JM
    PLoS One; 2014; 9(4):e94584. PubMed ID: 24728405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates.
    Weinberg JM; Venkatachalam MA; Roeser NF; Nissim I
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2826-31. PubMed ID: 10717001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F1FO-ATPase activity and ATP dependence of mitochondrial energization in proximal tubules after hypoxia/reoxygenation.
    Feldkamp T; Kribben A; Weinberg JM
    J Am Soc Nephrol; 2005 Jun; 16(6):1742-51. PubMed ID: 15843467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation.
    Feldkamp T; Weinberg JM; Hörbelt M; Von Kropff C; Witzke O; Nürnberger J; Kribben A
    Nephrol Dial Transplant; 2009 Jan; 24(1):43-51. PubMed ID: 18678559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic determinants of tyrosine phosphorylation of focal adhesion proteins during hypoxia/reoxygenation of kidney proximal tubules.
    Weinberg JM; Venkatachalam MA; Roeser NF; Senter RA; Nissim I
    Am J Pathol; 2001 Jun; 158(6):2153-64. PubMed ID: 11395393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
    Agarwal B; Dash RK; Stowe DF; Bosnjak ZJ; Camara AK
    Biochim Biophys Acta; 2014 Mar; 1837(3):354-65. PubMed ID: 24355434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation.
    Feldkamp T; Kribben A; Weinberg JM
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1092-102. PubMed ID: 15625081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alleviation of fatty acid and hypoxia-reoxygenation-induced proximal tubule deenergization by ADP/ATP carrier inhibition and glutamate.
    Feldkamp T; Kribben A; Roeser NF; Ostrowski T; Weinberg JM
    Am J Physiol Renal Physiol; 2007 May; 292(5):F1606-16. PubMed ID: 17244890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.
    Feldkamp T; Park JS; Pasupulati R; Amora D; Roeser NF; Venkatachalam MA; Weinberg JM
    Am J Physiol Renal Physiol; 2009 Dec; 297(6):F1632-46. PubMed ID: 19741014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria.
    Zoccarato F; Cavallini L; Bortolami S; Alexandre A
    Biochem J; 2007 Aug; 406(1):125-9. PubMed ID: 17477844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of respiratory inhibitors on glycolysis in proximal tubules.
    Dickman KG; Mandel LJ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD.
    Powell CS; Jackson RM
    Am J Physiol Lung Cell Mol Physiol; 2003 Jul; 285(1):L189-98. PubMed ID: 12665464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linoleic acid epoxide promotes the maintenance of mitochondrial function and active Na+ transport following hypoxia.
    Nowak G; Grant DF; Moran JH
    Toxicol Lett; 2004 Mar; 147(2):161-75. PubMed ID: 14757320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.