These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 14665431)
21. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction. Starnes JW; Barnes BD; Olsen ME J Appl Physiol (1985); 2007 May; 102(5):1793-8. PubMed ID: 17303708 [TBL] [Abstract][Full Text] [Related]
22. Evidence against increased hydroxyl radical production during oxygen deprivation-reoxygenation proximal tubular injury. Zager RA; Gmur DJ; Schimpf BA; Bredl CR; Foerder CA J Am Soc Nephrol; 1992 May; 2(11):1627-33. PubMed ID: 1319220 [TBL] [Abstract][Full Text] [Related]
23. S-[(1 and 2)-phenyl-2-hydroxyethyl]cysteine-induced alterations in renal mitochondrial function in male Fischer-344 rats. Chakrabarti SK; Denniel C; Malick MA; Bai C Toxicol Appl Pharmacol; 1998 Jul; 151(1):123-34. PubMed ID: 9705895 [TBL] [Abstract][Full Text] [Related]
24. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro. Conrad T; Landry GM; Aw TY; Nichols R; McMartin KE Clin Toxicol (Phila); 2016 Jul; 54(6):501-11. PubMed ID: 27002734 [TBL] [Abstract][Full Text] [Related]
25. Adverse effects of α-ketoglutarate/malate in a rat model of acute kidney injury. Bienholz A; Petrat F; Wenzel P; Ickerott P; Weinberg JM; Witzke O; Kribben A; de Groot H; Feldkamp T Am J Physiol Renal Physiol; 2012 Jul; 303(1):F56-63. PubMed ID: 22513847 [TBL] [Abstract][Full Text] [Related]
26. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung. Bongard RD; Yan K; Hoffmann RG; Audi SH; Zhang X; Lindemer BJ; Townsley MI; Merker MP Free Radic Biol Med; 2013 Dec; 65():1455-1463. PubMed ID: 23912160 [TBL] [Abstract][Full Text] [Related]
27. Opposite and tissue-specific effects of coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria: role of complex I. Gharib A; De Paulis D; Li B; Augeul L; Couture-Lepetit E; Gomez L; Angoulvant D; Ovize M J Mol Cell Cardiol; 2012 May; 52(5):1091-5. PubMed ID: 22387164 [TBL] [Abstract][Full Text] [Related]
28. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
29. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria]. Lemeshko VV; Shekh VE; Aleksenko TV Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781 [TBL] [Abstract][Full Text] [Related]
30. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Muller FL; Liu Y; Abdul-Ghani MA; Lustgarten MS; Bhattacharya A; Jang YC; Van Remmen H Biochem J; 2008 Jan; 409(2):491-9. PubMed ID: 17916065 [TBL] [Abstract][Full Text] [Related]
31. Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo. Wei Q; Alam MM; Wang MH; Yu F; Dong Z Am J Physiol Renal Physiol; 2004 Apr; 286(4):F803-9. PubMed ID: 14678945 [TBL] [Abstract][Full Text] [Related]
32. The effect of rotenone on the urinary ethanol cycle in rats fed ethanol intragastrically. Li J; Fu P; French BA; French SW Exp Mol Pathol; 2004 Dec; 77(3):210-3. PubMed ID: 15507238 [TBL] [Abstract][Full Text] [Related]
34. Mitochondrial energy metabolism in young bamboo rhizomes from Bambusa oldhamii and Phyllostachys edulis during shooting stage. Chien LF; Wu YC; Chen HP Plant Physiol Biochem; 2011 Apr; 49(4):449-57. PubMed ID: 21334908 [TBL] [Abstract][Full Text] [Related]
35. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766 [TBL] [Abstract][Full Text] [Related]
36. Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphologic features of apoptosis. Ueda N; Walker PD; Hsu SM; Shah SV Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7202-6. PubMed ID: 7638168 [TBL] [Abstract][Full Text] [Related]
37. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule. Gullans SR; Brazy PC; Soltoff SP; Dennis VW; Mandel LJ Am J Physiol; 1982 Aug; 243(2):F133-40. PubMed ID: 7114212 [TBL] [Abstract][Full Text] [Related]
38. Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia. Shetty PK; Galeffi F; Turner DA Neurobiol Dis; 2014 Feb; 62():469-78. PubMed ID: 24184921 [TBL] [Abstract][Full Text] [Related]
39. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. Nowak G; Clifton GL; Bakajsova D J Pharmacol Exp Ther; 2008 Mar; 324(3):1155-62. PubMed ID: 18055880 [TBL] [Abstract][Full Text] [Related]
40. Graded reoxygenation with chemical inhibition of oxidative phosphorylation improves posthypoxic recovery in murine hippocampal slices. Huber R; Spiegel T; Büchner M; Riepe MW J Neurosci Res; 2004 Feb; 75(3):441-9. PubMed ID: 14743458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]