These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14667045)

  • 21. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction.
    Henry JJ; Carinato ME; Schaefer JJ; Wolfe AD; Walter BE; Perry KJ; Elbl TN
    Dev Dyn; 2002 Jun; 224(2):168-85. PubMed ID: 12112470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells.
    Boswell BA; Musil LS
    Mol Biol Cell; 2015 Jul; 26(13):2561-72. PubMed ID: 25947138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An essential role for FGF receptor signaling in lens development.
    Robinson ML
    Semin Cell Dev Biol; 2006 Dec; 17(6):726-40. PubMed ID: 17116415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A critical role for thrombin in vertebrate lens regeneration.
    Imokawa Y; Simon A; Brockes JP
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):765-76. PubMed ID: 15293804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HSF4 is required for normal cell growth and differentiation during mouse lens development.
    Fujimoto M; Izu H; Seki K; Fukuda K; Nishida T; Yamada S; Kato K; Yonemura S; Inouye S; Nakai A
    EMBO J; 2004 Oct; 23(21):4297-306. PubMed ID: 15483628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Development, Growth, and Regeneration of the Crystalline Lens: A Review.
    Kumar B; Reilly MA
    Curr Eye Res; 2020 Mar; 45(3):313-326. PubMed ID: 31670974
    [No Abstract]   [Full Text] [Related]  

  • 28. Evaluation of fibroblast growth factor signaling during lens fiber cell differentiation.
    Huang JX; Feldmeier M; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):680-90. PubMed ID: 12556399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The involvement of neural retina pax6 in lens fiber differentiation.
    Reza HM; Yasuda K
    Dev Neurosci; 2004; 26(5-6):318-27. PubMed ID: 15855760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye.
    Hayashi T; Mizuno N; Takada R; Takada S; Kondoh H
    Mech Dev; 2006 Nov; 123(11):793-800. PubMed ID: 17030116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lens development and crystallin gene expression: many roles for Pax-6.
    Cvekl A; Piatigorsky J
    Bioessays; 1996 Aug; 18(8):621-30. PubMed ID: 8760335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic and extrinsic regulatory mechanisms are required to form and maintain a lens of the correct size and shape.
    McAvoy JW; Dawes LJ; Sugiyama Y; Lovicu FJ
    Exp Eye Res; 2017 Mar; 156():34-40. PubMed ID: 27109030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Which factors stimulate lens fiber cell differentiation in vivo?
    Lang RA
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3075-8. PubMed ID: 10586926
    [No Abstract]   [Full Text] [Related]  

  • 34. Signaling during lens regeneration.
    Grogg MW; Call MK; Tsonis PA
    Semin Cell Dev Biol; 2006 Dec; 17(6):753-8. PubMed ID: 17157042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis.
    Wolfe AD; Crimmins G; Cameron JA; Henry JJ
    Dev Dyn; 2004 Aug; 230(4):615-29. PubMed ID: 15254896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of retinoic acid in lens regeneration.
    Tsonis PA; Trombley MT; Rowland T; Chandraratna RA; del Rio-Tsonis K
    Dev Dyn; 2000 Dec; 219(4):588-93. PubMed ID: 11084658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FGF signals induce Caprin2 expression in the vertebrate lens.
    Lorén CE; Schrader JW; Ahlgren U; Gunhaga L
    Differentiation; 2009 Apr; 77(4):386-94. PubMed ID: 19275872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The roles of endogenous retinoid signaling in organ and appendage regeneration.
    Blum N; Begemann G
    Cell Mol Life Sci; 2013 Oct; 70(20):3907-27. PubMed ID: 23479131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration.
    Funayama N
    Int J Dev Biol; 2018; 62(6-7-8):513-525. PubMed ID: 29938763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unique aged human retinal pigmented epithelial cell line useful for studying lens differentiation in vitro.
    Tsonis PA; Jang W; Del Rio-Tsonis K; Eguchi G
    Int J Dev Biol; 2001 Sep; 45(5-6):753-8. PubMed ID: 11669377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.