BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1336 related articles for article (PubMed ID: 14667151)

  • 21. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasticity of hamster circadian entrainment patterns depends on light intensity.
    Gorman MR; Elliott JA; Evans JA
    Chronobiol Int; 2003 Mar; 20(2):233-48. PubMed ID: 12723883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple Lighting Manipulations Facilitate Behavioral Entrainment of Mice to 18-h Days.
    Walbeek TJ; Gorman MR
    J Biol Rhythms; 2017 Aug; 32(4):309-322. PubMed ID: 28770653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment.
    Refinetti R
    Physiol Behav; 2004 Sep; 82(2-3):285-94. PubMed ID: 15276790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potent circadian effects of dim illumination at night in hamsters.
    Gorman MR; Evans JA; Elliott JA
    Chronobiol Int; 2006; 23(1-2):245-50. PubMed ID: 16687298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat.
    Schwimmer H; Mursu N; Haim A
    Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative aspects of circadian rhythms in homeotherms, re-entrainment after phase shifts of the zeitgeber.
    Pohl H
    Int J Chronobiol; 1978; 5(4):493-517. PubMed ID: 700901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exotic photoperiods induce and entrain split circadian activity rhythms in hamsters.
    Gorman MR
    J Comp Physiol A; 2001 Dec; 187(10):793-800. PubMed ID: 11800036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.
    Barakat MT; O'Hara BF; Cao VH; Larkin JE; Heller HC; Ruby NF
    J Biol Rhythms; 2004 Aug; 19(4):287-97. PubMed ID: 15245648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina.
    Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D
    Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus).
    Ferraro JS
    J Interdiscipl Cycle Res; 1988; 19(1):29-47. PubMed ID: 11539080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An inbred lineage of djungarian hamsters with a strongly attenuated ability to synchronize.
    Weinert D; Schottner K
    Chronobiol Int; 2007; 24(6):1065-79. PubMed ID: 18075799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenotypic differences in reentrainment behavior and sensitivity to nighttime light pulses in siberian hamsters.
    Ruby NF; Barakat MT; Heller HC
    J Biol Rhythms; 2004 Dec; 19(6):530-41. PubMed ID: 15523114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian behavioral and melatonin rhythms in the European starling under light-dark cycles with steadily changing periods: evidence for close mutual coupling?
    Kumar V; Van't Hof TJ; Gwinner E
    Horm Behav; 2007 Nov; 52(4):409-16. PubMed ID: 17714714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 67.