These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 14667836)

  • 1. Dietary caloric restriction may delay the development of cataract by attenuating the oxidative stress in the lenses of Brown Norway rats.
    Wang K; Li D; Sun F
    Exp Eye Res; 2004 Jan; 78(1):151-8. PubMed ID: 14667836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caloric restriction retards age-related changes in rat retina.
    Li D; Sun F; Wang K
    Biochem Biophys Res Commun; 2003 Sep; 309(2):457-63. PubMed ID: 12951071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens.
    Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A
    Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP
    Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF; Xu GT; Cui XL
    Curr Eye Res; 1995 Oct; 14(10):951-8. PubMed ID: 8549161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calpain II induced insolubilization of lens beta-crystallin polypeptides may induce cataract.
    David LL; Wright JW; Shearer TR
    Biochim Biophys Acta; 1992 Jul; 1139(3):210-6. PubMed ID: 1627659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The presence of a human UV filter within the lens represents an oxidative stress.
    Berry Y; Truscott RJ
    Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract.
    Iwasaki N; David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):502-9. PubMed ID: 7843919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo.
    Giblin FJ; David LL; Wilmarth PA; Leverenz VR; Simpanya MF
    Mol Vis; 2013; 19():267-80. PubMed ID: 23401655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of oxidative damage to rat lens by pyruvate in vitro: possible attenuation in vivo.
    Varma SD; Ramachandran S; Devamanoharan PS; Morris SM; Ali AH
    Curr Eye Res; 1995 Aug; 14(8):643-9. PubMed ID: 8529399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderate caloric restriction delays cataract formation in the Emory mouse.
    Taylor A; Zuliani AM; Hopkins RE; Dallal GE; Treglia P; Kuck JF; Kuck K
    FASEB J; 1989 Apr; 3(6):1741-6. PubMed ID: 2703107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract.
    Cenedella RJ; Augusteyn RC
    Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
    Zhang J; Yan H; Lou MF
    Exp Eye Res; 2017 Aug; 161():36-42. PubMed ID: 28579033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.