BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14667846)

  • 21. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z.
    Rens W; O'Brien PC; Grützner F; Clarke O; Graphodatskaya D; Tsend-Ayush E; Trifonov VA; Skelton H; Wallis MC; Johnston S; Veyrunes F; Graves JA; Ferguson-Smith MA
    Genome Biol; 2007; 8(11):R243. PubMed ID: 18021405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of beta(2)-microglobulin coding sequence from three non-placental mammals: the duckbill platypus, the short-beaked echidna, and the grey short-tailed opossum.
    Miska KB; Hellman L; Miller RD
    Dev Comp Immunol; 2003 Mar; 27(3):247-56. PubMed ID: 12590975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of the dorsal and ventral thalamus in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).
    Ashwell KW
    Brain Struct Funct; 2012 Apr; 217(2):577-89. PubMed ID: 22113857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Platypus and echidna genomes reveal mammalian biology and evolution.
    Zhou Y; Shearwin-Whyatt L; Li J; Song Z; Hayakawa T; Stevens D; Fenelon JC; Peel E; Cheng Y; Pajpach F; Bradley N; Suzuki H; Nikaido M; Damas J; Daish T; Perry T; Zhu Z; Geng Y; Rhie A; Sims Y; Wood J; Haase B; Mountcastle J; Fedrigo O; Li Q; Yang H; Wang J; Johnston SD; Phillippy AM; Howe K; Jarvis ED; Ryder OA; Kaessmann H; Donnelly P; Korlach J; Lewin HA; Graves J; Belov K; Renfree MB; Grutzner F; Zhou Q; Zhang G
    Nature; 2021 Apr; 592(7856):756-762. PubMed ID: 33408411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals.
    Itoigawa A; Hayakawa T; Zhou Y; Manning AD; Zhang G; Grutzner F; Imai H
    Mol Biol Evol; 2022 Jun; 39(6):. PubMed ID: 35652727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.
    Lefèvre CM; Sharp JA; Nicholas KR
    Reprod Fertil Dev; 2009; 21(8):1015-27. PubMed ID: 19874726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution.
    Kirby PJ; Greaves IK; Koina E; Waters PD; Marshall Graves JA
    Chromosome Res; 2007; 15(8):975-84. PubMed ID: 18185983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy chain V region diversity in the duck-billed platypus (Ornithorhynchus anatinus): long and highly variable complementarity-determining region 3 compensates for limited germline diversity.
    Johansson J; Aveskogh M; Munday B; Hellman L
    J Immunol; 2002 May; 168(10):5155-62. PubMed ID: 11994470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the positional distribution of fatty acids in milk triglycerides of the extant monotremes platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus).
    Parodi PW; Griffiths M
    Lipids; 1983 Nov; 18(11):845-7. PubMed ID: 27519991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterisation of synaptonemal complex genes in monotremes.
    Casey AE; Daish TJ; Grutzner F
    Gene; 2015 Aug; 567(2):146-53. PubMed ID: 25981592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibody response to sheep red blood cells in platypus and echidna.
    Wronski EV; Woods GM; Munday BL
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Dec; 136(4):957-63. PubMed ID: 14667858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution and molecular characterization of a beta-globin gene from the Australian Echidna Tachyglossus aculeatus (Monotremata).
    Lee MH; Shroff R; Cooper SJ; Hope R
    Mol Phylogenet Evol; 1999 Jul; 12(2):205-14. PubMed ID: 10381323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracing monotreme venom evolution in the genomics era.
    Whittington CM; Belov K
    Toxins (Basel); 2014 Apr; 6(4):1260-73. PubMed ID: 24699339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hypothalamic supraoptic and paraventricular nuclei of the echidna and platypus.
    Ashwell KW; Lajevardi SE; Cheng G; Paxinos G
    Brain Behav Evol; 2006; 68(4):197-217. PubMed ID: 16809908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The unique sex chromosome system in platypus and echidna.
    Ferguson-Smith MA; Rens W
    Genetika; 2010 Oct; 46(10):1314-9. PubMed ID: 21250543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunoglobulin gamma chains of a monotreme mammal, the echidna (Tachyglossus aculeatus): amino acid composition and partial amino acid sequence.
    Atwell JL; Marchalonis JJ
    J Immunogenet; 1977 Apr; 4(2):73-80. PubMed ID: 406331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the cerebellum in the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).
    Ashwell KW
    Brain Behav Evol; 2012; 79(4):237-51. PubMed ID: 22572119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Color vision evolution in egg-laying mammals: insights from visual photoreceptors and daily activities of Australian echidnas.
    Sakamoto S; Matsushita Y; Itoigawa A; Ezawa T; Fujitani T; Takakura K; Zhou Y; Zhang G; Grutzner F; Kawamura S; Hayakawa T
    Zoological Lett; 2024 Jan; 10(1):2. PubMed ID: 38167154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of monotreme T-cell receptor alpha and beta chains.
    Belov K; Miller RD; Ilijeski A; Hellman L; Harrison GA
    Immunogenetics; 2004 Jun; 56(3):164-9. PubMed ID: 15133646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the morphology of the brachial plexus of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus).
    Koizumi M; Sakai T
    J Anat; 1997 Apr; 190 ( Pt 3)(Pt 3):447-55. PubMed ID: 9147230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.