BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 14668305)

  • 1. Partitioning of evaporative water loss in white-winged doves: plasticity in response to short-term thermal acclimation.
    McKechnie AE; Wolf BO
    J Exp Biol; 2004 Jan; 207(Pt 2):203-10. PubMed ID: 14668305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of evaporative water loss into respiratory and cutaneous pathways in Wahlberg's epauletted fruit bats (Epomophorus wahlbergi).
    Minnaar IA; Bennett NC; Chimimba CT; McKechnie AE
    Physiol Biochem Zool; 2014; 87(3):475-85. PubMed ID: 24769711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail.
    Smith EK; O'Neill J; Gerson AR; Wolf BO
    J Exp Biol; 2015 Nov; 218(Pt 22):3636-46. PubMed ID: 26582934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars.
    O'Connor RS; Wolf BO; Brigham RM; McKechnie AE
    J Comp Physiol B; 2017 Apr; 187(3):477-491. PubMed ID: 27812726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation.
    McKechnie AE; Chetty K; Lovegrove BG
    J Exp Biol; 2007 Jan; 210(Pt 1):97-106. PubMed ID: 17170153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological responses in rufous-collared sparrows to thermal acclimation and seasonal acclimatization.
    Maldonado KE; Cavieres G; Veloso C; Canals M; Sabat P
    J Comp Physiol B; 2009 Apr; 179(3):335-43. PubMed ID: 19011873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia.
    Webster MD; King JR
    J Comp Physiol B; 1987; 157(2):253-60. PubMed ID: 3571575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Warm Temperatures on Metabolic Rate and Evaporative Water Loss in Tuatara, a Cool-Climate Rhynchocephalian Survivor.
    Jarvie S; Jowett T; Thompson MB; Seddon PJ; Cree A
    Physiol Biochem Zool; 2018; 91(4):950-966. PubMed ID: 29863954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids.
    McKechnie AE; Whitfield MC; Smit B; Gerson AR; Smith EK; Talbot WA; McWhorter TJ; Wolf BO
    J Exp Biol; 2016 Jul; 219(Pt 14):2145-55. PubMed ID: 27207640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heat-acclimated pigeon: an ideal physiological model for a desert bird.
    Marder J; Gavrieli-Levin I
    J Appl Physiol (1985); 1987 Mar; 62(3):952-8. PubMed ID: 3571094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures.
    Williams JB; Tieleman BI
    J Exp Biol; 2000 Oct; 203(Pt 20):3153-9. PubMed ID: 11003826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutaneous and respiratory water loss in larks from arid and mesic environments.
    Tieleman BI; Williams JB
    Physiol Biochem Zool; 2002; 75(6):590-9. PubMed ID: 12601615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of Houbara bustards to high ambient temperatures.
    Tieleman BI; Williams JB; LaCroix F; Paillat P
    J Exp Biol; 2002 Feb; 205(Pt 4):503-11. PubMed ID: 11893764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoregulatory physiology of the Crested Pigeon Ocyphaps lophotes and the Brush Bronzewing Phaps elegans.
    Larcombe AN; Withers PC; Maloney SK
    J Comp Physiol B; 2003 Apr; 173(3):215-22. PubMed ID: 12743724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis.
    Jayasundara N; Somero GN
    J Exp Biol; 2013 Jun; 216(Pt 11):2111-21. PubMed ID: 23678101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory evaporative water loss during hovering and forward flight in hummingbirds.
    Powers DR; Getsinger PW; Tobalske BW; Wethington SM; Powers SD; Warrick DR
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Feb; 161(2):279-85. PubMed ID: 22123217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.
    Muñoz-Garcia A; Larraín P; Ben-Hamo M; Cruz-Neto A; Williams JB; Pinshow B; Korine C
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():156-165. PubMed ID: 26459985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction norms for heat tolerance and evaporative cooling capacity do not vary across a climatic gradient in a passerine bird.
    Noakes MJ; McKechnie AE
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Oct; 236():110522. PubMed ID: 31278988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell's sandgrouse (Pterocles burchelli).
    McKechnie AE; Smit B; Whitfield MC; Noakes MJ; Talbot WA; Garcia M; Gerson AR; Wolf BO
    J Exp Biol; 2016 Jul; 219(Pt 14):2137-44. PubMed ID: 27207634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.