BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14668367)

  • 1. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans.
    Shimizu K; Hicks JK; Huang TP; Keller NP
    Genetics; 2003 Nov; 165(3):1095-104. PubMed ID: 14668367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans.
    Shimizu K; Keller NP
    Genetics; 2001 Feb; 157(2):591-600. PubMed ID: 11156981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway.
    Hicks JK; Yu JH; Keller NP; Adams TH
    EMBO J; 1997 Aug; 16(16):4916-23. PubMed ID: 9305634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans.
    Ni M; Rierson S; Seo JA; Yu JH
    Eukaryot Cell; 2005 Aug; 4(8):1465-76. PubMed ID: 16087751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosducin-like protein PhnA is required for Gbetagamma-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans.
    Seo JA; Yu JH
    Eukaryot Cell; 2006 Feb; 5(2):400-10. PubMed ID: 16467480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulator of G Protein Signaling Contributes to the Development and Aflatoxin Biosynthesis in Aspergillus flavus through the Regulation of Gα Activity.
    Xie R; Yang K; Tumukunde E; Guo Z; Zhang B; Liu Y; Zhuang Z; Yuan J; Wang S
    Appl Environ Microbiol; 2022 Jun; 88(12):e0024422. PubMed ID: 35638847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans.
    Fillinger S; Chaveroche MK; Shimizu K; Keller N; d'Enfert C
    Mol Microbiol; 2002 May; 44(4):1001-16. PubMed ID: 12046590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis.
    Fernandes M; Keller NP; Adams TH
    Mol Microbiol; 1998 Jun; 28(6):1355-65. PubMed ID: 9680223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CreA-independent carbon catabolite repression of cellulase genes by trimeric G-protein and protein kinase A in Aspergillus nidulans.
    Kunitake E; Li Y; Uchida R; Nohara T; Asano K; Hattori A; Kimura T; Kanamaru K; Kimura M; Kobayashi T
    Curr Genet; 2019 Aug; 65(4):941-952. PubMed ID: 30796472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspergillus nidulans mutants defective in stc gene cluster regulation.
    Butchko RA; Adams TH; Keller NP
    Genetics; 1999 Oct; 153(2):715-20. PubMed ID: 10511551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus.
    Yu JH; Butchko RA; Fernandes M; Keller NP; Leonard TJ; Adams TH
    Curr Genet; 1996 May; 29(6):549-55. PubMed ID: 8662194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus.
    Roze LV; Beaudry RM; Keller NP; Linz JE
    Mycopathologia; 2004 Aug; 158(2):219-32. PubMed ID: 15518351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Analysis of Aspergillus nidulans PKA Phosphorylome Identifies a Novel Mode of CreA Regulation.
    Ribeiro LFC; Chelius C; Boppidi KR; Naik NS; Hossain S; Ramsey JJJ; Kumar J; Ribeiro LF; Ostermeier M; Tran B; Ah Goo Y; de Assis LJ; Ulas M; Bayram O; Goldman GH; Lincoln S; Srivastava R; Harris SD; Marten MR
    mBio; 2019 Apr; 10(2):. PubMed ID: 31040248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RcoA has pleiotropic effects on Aspergillus nidulans cellular development.
    Hicks J; Lockington RA; Strauss J; Dieringer D; Kubicek CP; Kelly J; Keller N
    Mol Microbiol; 2001 Mar; 39(6):1482-93. PubMed ID: 11260466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LaeA, a regulator of secondary metabolism in Aspergillus spp.
    Bok JW; Keller NP
    Eukaryot Cell; 2004 Apr; 3(2):527-35. PubMed ID: 15075281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary metabolic gene cluster silencing in Aspergillus nidulans.
    Bok JW; Noordermeer D; Kale SP; Keller NP
    Mol Microbiol; 2006 Sep; 61(6):1636-45. PubMed ID: 16968230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans.
    Lafon A; Seo JA; Han KH; Yu JH; d'Enfert C
    Genetics; 2005 Sep; 171(1):71-80. PubMed ID: 15944355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR.
    Yin WB; Amaike S; Wohlbach DJ; Gasch AP; Chiang YM; Wang CC; Bok JW; Rohlfs M; Keller NP
    Mol Microbiol; 2012 Mar; 83(5):1024-34. PubMed ID: 22283524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus.
    Kwon NJ; Park HS; Jung S; Kim SC; Yu JH
    Eukaryot Cell; 2012 Nov; 11(11):1399-412. PubMed ID: 23002107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation.
    Schier N; Liese R; Fischer R
    Mol Cell Biol; 2001 Jun; 21(12):4075-88. PubMed ID: 11359914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.