These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 14669802)

  • 1. Composting under controlled conditions.
    Cronjé A; Turner C; Williams A; Barker A; Guy S
    Environ Technol; 2003 Oct; 24(10):1221-34. PubMed ID: 14669802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical modelling of the composting environment: a review. Part 2: Simulation performance.
    Mason IG; Milke MW
    Waste Manag; 2005; 25(5):501-9. PubMed ID: 15925759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical modelling of the composting environment: a review. Part 1: Reactor systems.
    Mason IG; Milke MW
    Waste Manag; 2005; 25(5):481-500. PubMed ID: 15925758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of free air space on microbial kinetics in passively aerated compost.
    Yu S; Clark OG; Leonard JJ
    Bioresour Technol; 2009 Jan; 100(2):782-90. PubMed ID: 18710800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of some treatments for improving the composting of municipal solid waste.
    Babyranidevi S; Bhoyar RV
    Indian J Environ Health; 2003 Jul; 45(3):231-4. PubMed ID: 15315147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration.
    de Guardia A; Petiot C; Benoist JC; Druilhe C
    Waste Manag; 2012 Jun; 32(6):1091-105. PubMed ID: 22301461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of aeration rate and kinetics of composting some agricultural wastes.
    Kulcu R; Yaldiz O
    Bioresour Technol; 2004 May; 93(1):49-57. PubMed ID: 14987720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of aeration rate on nitrogen dynamics during composting.
    de Guardia A; Petiot C; Rogeau D; Druilhe C
    Waste Manag; 2008; 28(3):575-87. PubMed ID: 17826974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ).
    Gea T; Barrena R; Artola A; Sánchez A
    Biotechnol Bioeng; 2004 Nov; 88(4):520-7. PubMed ID: 15459907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing composting parameters for nitrogen conservation in composting.
    Bueno P; Tapias R; López F; Díaz MJ
    Bioresour Technol; 2008 Jul; 99(11):5069-77. PubMed ID: 18023339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respirometric assays at fixed and process temperatures to monitor composting process.
    Barrena Gómez R; Vázquez Lima F; Gordillo Bolasell MA; Gea T; Sánchez Ferrer A
    Bioresour Technol; 2005 Jul; 96(10):1153-9. PubMed ID: 15683906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical characterisation and mathematical modelling of settlement in composting batch reactors.
    Illa J; Prenafeta-Boldú FX; Bonmatí A; Flotats X
    Bioresour Technol; 2012 Jan; 104():451-8. PubMed ID: 22100237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon turnover and ammonia emissions during composting of biowaste at different temperatures.
    Eklind Y; Sundberg C; Smårs S; Steger K; Sundh I; Kirchmann H; Jönsson H
    J Environ Qual; 2007; 36(5):1512-20. PubMed ID: 17766831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting biodegradable volatile solids degradation profiles in the composting process.
    Mason IG
    Waste Manag; 2009 Feb; 29(2):559-69. PubMed ID: 18572400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures.
    Li Q; Wang XC; Zhang HH; Shi HL; Hu T; Ngo HH
    Bioresour Technol; 2013 Jun; 137():270-7. PubMed ID: 23587829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air.
    Finstein MS; Hogan JA; Sager JC; Cowan RM; Strom PF
    Life Support Biosph Sci; 1999; 6(3):181-91. PubMed ID: 11542678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of enforced aeration on in-vessel food waste composting.
    Lu SG; Imai T; Li HF; Ukita M; Sekine M; Higuchi T
    Environ Technol; 2001 Oct; 22(10):1177-82. PubMed ID: 11766039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of turning on the microbial consortia and the in situ temperature preferences of microorganisms in a laboratory-scale swine manure composting.
    Kuok F; Mimoto H; Nakasaki K
    Bioresour Technol; 2012 Jul; 116():421-7. PubMed ID: 22525266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass.
    Barrena R; Canovas C; Sánchez A
    Waste Manag; 2006; 26(9):953-9. PubMed ID: 16213130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.