These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14669990)

  • 1. Molecular recognition between Azotobacter vinelandii rhodanese and a sulfur acceptor protein.
    Cereda A; Forlani F; Iametti S; Bernhardt R; Ferranti P; Picariello G; Pagani S; Bonomi F
    Biol Chem; 2003; 384(10-11):1473-81. PubMed ID: 14669990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form.
    Forlani F; Cereda A; Freuer A; Nimtz M; Leimkühler S; Pagani S
    FEBS Lett; 2005 Dec; 579(30):6786-90. PubMed ID: 16310786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance.
    Remelli W; Cereda A; Papenbrock J; Forlani F; Pagani S
    Biol Chem; 2010 Jul; 391(7):777-84. PubMed ID: 20482308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA.
    Cartini F; Remelli W; Dos Santos PC; Papenbrock J; Pagani S; Forlani F
    Amino Acids; 2011 Jun; 41(1):141-50. PubMed ID: 20213443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lack of rhodanese RhdA affects the sensitivity of Azotobacter vinelandii to oxidative events.
    Cereda A; Carpen A; Picariello G; Tedeschi G; Pagani S
    Biochem J; 2009 Feb; 418(1):135-43. PubMed ID: 18925874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese.
    Bordo D; Forlani F; Spallarossa A; Colnaghi R; Carpen A; Bolognesi M; Pagani S
    Biol Chem; 2001 Aug; 382(8):1245-52. PubMed ID: 11592406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the deficiency of the rhodanese-like protein RhdA in Azotobacter vinelandii.
    Cereda A; Carpen A; Picariello G; Iriti M; Faoro F; Ferranti P; Pagani S
    FEBS Lett; 2007 Apr; 581(8):1625-30. PubMed ID: 17383639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases.
    Pagani S; Forlani F; Carpen A; Bordo D; Colnaghi R
    FEBS Lett; 2000 Apr; 472(2-3):307-11. PubMed ID: 10788632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that elongation of the catalytic loop of the Azotobacter vinelandii rhodanese changed selectivity from sulfur- to phosphate-containing substrates.
    Forlani F; Carpen A; Pagani S
    Protein Eng; 2003 Jul; 16(7):515-9. PubMed ID: 12915729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii.
    Colnaghi R; Pagani S; Kennedy C; Drummond M
    Eur J Biochem; 1996 Feb; 236(1):240-8. PubMed ID: 8617271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the Azotobacter vinelandii rhodanese-like protein RhdA in the glutathione regeneration pathway.
    Remelli W; Guerrieri N; Klodmann J; Papenbrock J; Pagani S; Forlani F
    PLoS One; 2012; 7(9):e45193. PubMed ID: 23049775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa.
    Cipollone R; Bigotti MG; Frangipani E; Ascenzi P; Visca P
    Biochem Biophys Res Commun; 2004 Dec; 325(1):85-90. PubMed ID: 15522204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azotobacter vinelandii rhodanese: selenium loading and ion interaction studies.
    Melino S; Cicero DO; Orsale M; Forlani F; Pagani S; Paci M
    Eur J Biochem; 2003 Oct; 270(20):4208-15. PubMed ID: 14519133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N-terminal rhodanese domain from Azotobacter vinelandii has a stable and folded structure independently of the C-terminal domain.
    Melino S; Cicero DO; Forlani F; Pagani S; Paci M
    FEBS Lett; 2004 Nov; 577(3):403-8. PubMed ID: 15556618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of Azotobacter vinelandii rhodanese.
    Pagani S; Sessa G; Sessa F; Colnaghi R
    Biochem Mol Biol Int; 1993 Mar; 29(4):595-604. PubMed ID: 8490572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfurtransferases activity and the level of low-molecular-weight thiols and sulfane sulfur compounds in cortex and brain stem of mouse.
    Wróbel M; Włodek L; Srebro Z
    Neurobiology (Bp); 1996; 4(3):217-22. PubMed ID: 9044347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanide detoxification by recombinant bacterial rhodanese.
    Cipollone R; Ascenzi P; Frangipani E; Visca P
    Chemosphere; 2006 May; 63(6):942-9. PubMed ID: 16307778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Azotobacter vinelandii rhodanese by NO-donors.
    Spallarossa A; Forlani F; Pagani S; Salvati L; Visca P; Ascenzi P; Bolognesi M; Bordo D
    Biochem Biophys Res Commun; 2003 Jul; 306(4):1002-7. PubMed ID: 12821142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.