These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 14670033)

  • 1. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules.
    Blom MT; Chmela E; Oosterbroek RE; Tijssen R; van den Berg A
    Anal Chem; 2003 Dec; 75(24):6761-8. PubMed ID: 14670033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.
    Otte T; Pasch H; Macko T; Brüll R; Stadler FJ; Kaschta J; Becker F; Buback M
    J Chromatogr A; 2011 Jul; 1218(27):4257-67. PubMed ID: 21238968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chip system for size separation of macromolecules and particles by hydrodynamic chromatography.
    Chmela E; Tijssen R; Blom MT; Gardeniers HJ; van den Berg A
    Anal Chem; 2002 Jul; 74(14):3470-5. PubMed ID: 12139056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of propyl-functionalized hybrid monolithic silica capillaries and evaluation of their performances in nano-LC and CEC.
    Roux R; Puy G; Demesmay C; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3035-42. PubMed ID: 18027896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography.
    Uliyanchenko E; Schoenmakers PJ; van der Wal S
    J Chromatogr A; 2011 Mar; 1218(11):1509-18. PubMed ID: 21300362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature.
    Im K; Park HW; Lee S; Chang T
    J Chromatogr A; 2009 May; 1216(21):4606-10. PubMed ID: 19375711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical ethanol--a fascinating dispersion medium for silica nanoparticles.
    Ghosh SK; Deguchi S; Mukai SA; Tsujii K
    J Phys Chem B; 2007 Jul; 111(28):8169-74. PubMed ID: 17585799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched-polymer separations using comprehensive two-dimensional molecular-topology fractionation x size-exclusion chromatography.
    Edam R; Meunier DM; Mes EP; Van Damme FA; Schoenmakers PJ
    J Chromatogr A; 2008 Aug; 1201(2):208-14. PubMed ID: 18550074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation.
    Regazzetti A; Hoyos M; Martin M
    Anal Chem; 2004 Oct; 76(19):5787-98. PubMed ID: 15456299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol for designing comprehensive two-dimensional liquid chromatography separation systems.
    Schoenmakers PJ; Vivó-Truyols G; Decrop WM
    J Chromatogr A; 2006 Jul; 1120(1-2):282-90. PubMed ID: 16376907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-textured surfaces from spin coating.
    Weiss RA; Zhai X; Dobrynin AV
    Langmuir; 2008 May; 24(10):5218-20. PubMed ID: 18380470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel fluorescent silica nanoparticles: towards ultrabright silica nanoparticles.
    Sokolov I; Naik S
    Small; 2008 Jul; 4(7):934-9. PubMed ID: 18581411
    [No Abstract]   [Full Text] [Related]  

  • 16. Separation and metrology of nanoparticles by nanofluidic size exclusion.
    Stavis SM; Geist J; Gaitan M
    Lab Chip; 2010 Oct; 10(19):2618-21. PubMed ID: 20714640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation.
    Hawe A; Friess W; Sutter M; Jiskoot W
    Anal Biochem; 2008 Jul; 378(2):115-22. PubMed ID: 18455994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative equivalence between polymer nanocomposites and thin polymer films.
    Bansal A; Yang H; Li C; Cho K; Benicewicz BC; Kumar SK; Schadler LS
    Nat Mater; 2005 Sep; 4(9):693-8. PubMed ID: 16086021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bionanotechnology based on silica nanoparticles.
    Tan W; Wang K; He X; Zhao XJ; Drake T; Wang L; Bagwe RP
    Med Res Rev; 2004 Sep; 24(5):621-38. PubMed ID: 15224383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.