BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 14670056)

  • 21. Insights into the structure and dynamics of a room-temperature ionic liquid: ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture.
    Bhargava BL; Balasubramanian S
    J Phys Chem B; 2007 May; 111(17):4477-87. PubMed ID: 17417900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes.
    Sur UK; Marken F; Coles BA; Compton RG; Dupont J
    Chem Commun (Camb); 2004 Dec; (24):2816-7. PubMed ID: 15599421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous solution of [bmim][PF6]: ion and solvent effects on structure and dynamics.
    Raju SG; Balasubramanian S
    J Phys Chem B; 2009 Apr; 113(14):4799-806. PubMed ID: 19338368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field.
    Micaelo NM; Baptista AM; Soares CM
    J Phys Chem B; 2006 Jul; 110(29):14444-51. PubMed ID: 16854154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids.
    Wang SF; Chen T; Zhang ZL; Shen XC; Lu ZX; Pang DW; Wong KY
    Langmuir; 2005 Sep; 21(20):9260-6. PubMed ID: 16171360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The glass-liquid transition of water on hydrophobic surfaces.
    Souda R
    J Chem Phys; 2008 Sep; 129(12):124707. PubMed ID: 19045048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid.
    Baslé O; Borduas N; Dubois P; Chapuzet JM; Chan TH; Lessard J; Li CJ
    Chemistry; 2010 Jul; 16(27):8162-6. PubMed ID: 20533455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Grafting of imidazolium based ionic liquid on the pore surface of nanoporous materials--study of physicochemical and thermodynamic properties.
    Vangeli OC; Romanos GE; Beltsios KG; Fokas D; Kouvelos EP; Stefanopoulos KL; Kanellopoulos NK
    J Phys Chem B; 2010 May; 114(19):6480-91. PubMed ID: 20411960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of ionic liquid with water in ternary microemulsions (Triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151.
    Seth D; Chakraborty A; Setua P; Sarkar N
    Langmuir; 2006 Aug; 22(18):7768-75. PubMed ID: 16922562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleophilicity in ionic liquids. 3. Anion effects on halide nucleophilicity in a series of 1-butyl-3-methylimidazolium ionic liquids.
    Lancaster NL; Welton T
    J Org Chem; 2004 Sep; 69(18):5986-92. PubMed ID: 15373482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion.
    Zhou GP; Zhang Y; Huang XR; Shi CH; Liu WF; Li YZ; Qu YB; Gao PJ
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):146-9. PubMed ID: 18602799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Layering at an ionic liquid-vapor interface: a molecular dynamics simulation study of [bmim][PF6].
    Bhargava BL; Balasubramanian S
    J Am Chem Soc; 2006 Aug; 128(31):10073-8. PubMed ID: 16881635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of anion transfer across the liquid | liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry.
    Quentel F; Mirceski V; L'Her M
    Anal Chem; 2005 Apr; 77(7):1940-9. PubMed ID: 15801722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and voltammetry of [bmim]4[alpha-S2W18O62] and related compounds: rapid precipitation and dissolution of reduced surface films.
    Mariotti AW; Xie J; Abrahams BF; Bond AM; Wedd AG
    Inorg Chem; 2007 Apr; 46(7):2530-40. PubMed ID: 17346039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy.
    Chang JK; Lee MT; Tsai WT; Deng MJ; Cheng HF; Sun IW
    Langmuir; 2009 Oct; 25(19):11955-60. PubMed ID: 19621902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiprobe spectroscopic evidence for "hyperpolarity" within 1-butyl-3-methylimidazolium hexafluorophosphate mixtures with tetraethylene glycol.
    Sarkar A; Trivedi S; Baker GA; Pandey S
    J Phys Chem B; 2008 Nov; 112(47):14927-36. PubMed ID: 18954101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination.
    Sun W; Duan Y; Li Y; Gao H; Jiao K
    Talanta; 2009 May; 78(3):695-9. PubMed ID: 19269414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate [bmim][pf6] computed by reverse nonequilibrium molecular dynamics.
    Zhao W; Leroy F; Balasubramanian S; Müller-Plathe F
    J Phys Chem B; 2008 Jul; 112(27):8129-33. PubMed ID: 18558736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.