These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 14670321)
1. Induction of persistent in vivo resistance to Mycobacterium avium infection in BALB/c mice injected with interleukin-18-secreting fibroblasts. Chung SW; Choi SH; Kim TS Vaccine; 2004 Jan; 22(3-4):398-406. PubMed ID: 14670321 [TBL] [Abstract][Full Text] [Related]
2. Induction of in vivo persistent anti-mycobacterial activity by interferon-gamma-secreting fibroblasts. Kim TS; Chung SW; Kang BY; Choe YY; Hwang SY Vaccine; 2000 Jan; 18(11-12):1067-73. PubMed ID: 10590327 [TBL] [Abstract][Full Text] [Related]
3. Anti-CD3 single-chain Fv/interleukin-18 fusion DNA induces anti-mycobacterial resistance via efficient interferon-gamma production in BALB/c mice infected with Mycobacterium avium. Kim SH; Cho D; Kim TS Vaccine; 2006 Apr; 24(16):3365-73. PubMed ID: 16481075 [TBL] [Abstract][Full Text] [Related]
4. Interleukin-12-secreting fibroblasts are more efficient than free recombinant interleukin-12 in inducing the persistent resistance to Mycobacterium avium complex infection. Kang BY; Chung SW; Lim YS; Kim EJ; Kim SH; Hwang SY; Kim TS Immunology; 1999 Jul; 97(3):474-80. PubMed ID: 10447770 [TBL] [Abstract][Full Text] [Related]
5. Induction of in vivo resistance to Mycobacterium avium infection by intramuscular injection with DNA encoding interleukin-18. Kim SH; Cho D; Kim TS Immunology; 2001 Feb; 102(2):234-41. PubMed ID: 11260329 [TBL] [Abstract][Full Text] [Related]
6. The role of tumour necrosis factor-alpha in combination with interferon-gamma or interleukin-1 in the induction of immunosuppressive macrophages because of Mycobacterium avium complex infection. Tomioka H; Maw WW; Sato K; Saito H Immunology; 1996 May; 88(1):61-7. PubMed ID: 8707352 [TBL] [Abstract][Full Text] [Related]
7. Role of Th1/Th17 balance regulated by T-bet in a mouse model of Mycobacterium avium complex disease. Matsuyama M; Ishii Y; Yageta Y; Ohtsuka S; Ano S; Matsuno Y; Morishima Y; Yoh K; Takahashi S; Ogawa K; Hogaboam CM; Hizawa N J Immunol; 2014 Feb; 192(4):1707-17. PubMed ID: 24446514 [TBL] [Abstract][Full Text] [Related]
8. Effects of benzoxazinorifamycin KRM-1648 on cytokine production at sites of Mycobacterium avium complex infection induced in mice. Tomioka H; Sato K; Shimizu T; Sano C; Akaki T; Saito H; Fujii K; Hidaka T Antimicrob Agents Chemother; 1997 Feb; 41(2):357-62. PubMed ID: 9021192 [TBL] [Abstract][Full Text] [Related]
9. IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections. Denis M; Ghadirian E J Immunol; 1993 Nov; 151(10):5425-30. PubMed ID: 8228235 [TBL] [Abstract][Full Text] [Related]
10. IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease. Bai X; Ovrutsky AR; Kartalija M; Chmura K; Kamali A; Honda JR; Oberley-Deegan RE; Dinarello CA; Crapo JD; Chang LY; Chan ED Int Immunol; 2011 Nov; 23(11):679-91. PubMed ID: 22033195 [TBL] [Abstract][Full Text] [Related]
11. Endogenous interleukin-12 is involved in resistance of mice to Mycobacterium avium complex infection. Saunders BM; Zhan Y; Cheers C Infect Immun; 1995 Oct; 63(10):4011-5. PubMed ID: 7558312 [TBL] [Abstract][Full Text] [Related]
12. Changes in serum immunomolecules during antibiotic therapy for Mycobacterium avium complex lung disease. Kim SY; Koh WJ; Park HY; Jeon K; Kwon OJ; Cho SN; Shin SJ Clin Exp Immunol; 2014 Apr; 176(1):93-101. PubMed ID: 24354934 [TBL] [Abstract][Full Text] [Related]
14. [Mechanism of bacterial regrowth at the sites of infection in Mycobacterium avium complex-infected mice during treatment with chemotherapeutic agents]. Sato K; Tomioka H; Maw WW; Saito H Kekkaku; 1995 Dec; 70(12):673-8. PubMed ID: 8551714 [TBL] [Abstract][Full Text] [Related]
15. Natural killer cell-dependent mycobacteriostatic and mycobactericidal activity in human macrophages. Bermudez LE; Young LS J Immunol; 1991 Jan; 146(1):265-70. PubMed ID: 1898601 [TBL] [Abstract][Full Text] [Related]
16. Effects of the Chinese traditional medicine mao-bushi-saishin-to on therapeutic efficacy of a new benzoxazinorifamycin, KRM-1648, against Mycobacterium avium infection in mice. Shimizu T; Tomioka H; Sato K; Sano C; Akaki T; Dekio S; Yamada Y; Kamei T; Shibata H; Higashi N Antimicrob Agents Chemother; 1999 Mar; 43(3):514-9. PubMed ID: 10049260 [TBL] [Abstract][Full Text] [Related]
17. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection. Marinho FA; de Paula RR; Mendes AC; de Almeida LA; Gomes MT; Carvalho NB; Oliveira FS; Caliari MV; Oliveira SC Eur J Immunol; 2013 Sep; 43(9):2373-85. PubMed ID: 23716075 [TBL] [Abstract][Full Text] [Related]
18. Interleukin 23/interleukin 17 axis activated by Mycobacterium avium complex (MAC) is attenuated in patients with MAC-lung disease. Shu CC; Wang JY; Wu MF; Lai HC; Chiang BL; Yu CJ Tuberculosis (Edinb); 2018 May; 110():7-14. PubMed ID: 29779777 [TBL] [Abstract][Full Text] [Related]
19. Exposure of BALB/c mice to low doses of Mycobacterium avium increases resistance to a subsequent high-dose infection. Fattorini L; Nisini R; Fan Y; Li YJ; Tan D; Mariotti S; Teloni R; Iona E; Orefici G Microbiology (Reading); 2002 Oct; 148(Pt 10):3173-3181. PubMed ID: 12368451 [TBL] [Abstract][Full Text] [Related]
20. Infection with Mycobacterium avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Bermudez LE; Champsi J Infect Immun; 1993 Jul; 61(7):3093-7. PubMed ID: 8514420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]