BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14670414)

  • 21. Pseudophakic accommodation with 2 models of foldable intraocular lenses.
    Vámosi P; Nemeth G; Berta A
    J Cataract Refract Surg; 2006 Feb; 32(2):221-6. PubMed ID: 16564996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of refraction, accommodation, and lens position after implantation of the 1CU accommodating posterior chamber intraocular lens.
    Küchle M; Seitz B; Langenbucher A; Martus P; Nguyen NX;
    J Cataract Refract Surg; 2003 Dec; 29(12):2324-9. PubMed ID: 14709293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term changes in intraocular lens position and corneal curvature after cataract surgery and their effect on refraction.
    Klijn S; Sicam VA; Reus NJ
    J Cataract Refract Surg; 2016 Jan; 42(1):35-43. PubMed ID: 26948776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual Outcomes and Accommodative Response of the Lumina Accommodative Intraocular Lens.
    Alio JL; Simonov A; Plaza-Puche AB; Angelov A; Angelov Y; van Lawick W; Rombach M
    Am J Ophthalmol; 2016 Apr; 164():37-48. PubMed ID: 26829595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes of the accommodative amplitude and the anterior chamber depth after implantation of an accommodative intraocular lens.
    Schneider H; Stachs O; Göbel K; Guthoff R
    Graefes Arch Clin Exp Ophthalmol; 2006 Mar; 244(3):322-9. PubMed ID: 16133019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Accommodative Performance of a New Accommodative Intraocular Lens.
    Alió JL; Simonov AN; Romero D; Angelov A; Angelov Y; van Lawick W; Rombach MC
    J Refract Surg; 2018 Feb; 34(2):78-83. PubMed ID: 29425385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudo-accommodation in non-amblyopic children after bilateral cataract surgery and implantation with a monofocal intraocular lens: prevalence and possible mechanisms.
    Dénier C; Dureau P; Edelson C; Barjol A; Caputo G
    Graefes Arch Clin Exp Ophthalmol; 2017 Feb; 255(2):407-412. PubMed ID: 27785598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of accommodation amplitudes in pseudophakic eyes measured with three different methods.
    Nemeth G; Tsorbatzoglou A; Vamosi P; Sohajda Z; Berta A
    Eye (Lond); 2008 Jan; 22(1):65-9. PubMed ID: 16858433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of posterior corneal astigmatism on power calculation and alignment of toric intraocular lenses: Comparison of methodologies.
    Reitblat O; Levy A; Kleinmann G; Abulafia A; Assia EI
    J Cataract Refract Surg; 2016 Feb; 42(2):217-25. PubMed ID: 27026445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Outcome of toric intraocular lens implantation after adjusting for anterior chamber depth and intraocular lens sphere equivalent power effects.
    Goggin M; Moore S; Esterman A
    Arch Ophthalmol; 2011 Aug; 129(8):998-1003. PubMed ID: 21825183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraocular lens movement and accommodation in eyes of young patients.
    Lesiewska-Junk H; Kałuzny J
    J Cataract Refract Surg; 2000 Apr; 26(4):562-5. PubMed ID: 10771230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anterior segment changes during accommodation in eyes with a monofocal intraocular lens: high-frequency ultrasound study.
    Marchini G; Pedrotti E; Modesti M; Visentin S; Tosi R
    J Cataract Refract Surg; 2008 Jun; 34(6):949-56. PubMed ID: 18499000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraocular lens movement caused by ciliary muscle contraction.
    Findl O; Kiss B; Petternel V; Menapace R; Georgopoulos M; Rainer G; Drexler W
    J Cataract Refract Surg; 2003 Apr; 29(4):669-76. PubMed ID: 12686233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of interface reflection in pseudophakic eyes with an additional refractive intraocular lens.
    Schrecker J; Zoric K; Meßner A; Eppig T
    J Cataract Refract Surg; 2012 Sep; 38(9):1650-6. PubMed ID: 22819522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulus-driven versus pilocarpine-induced biometric changes in pseudophakic eyes.
    Kriechbaum K; Findl O; Koeppl C; Menapace R; Drexler W
    Ophthalmology; 2005 Mar; 112(3):453-9. PubMed ID: 15745773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some factors governing the efficacy of positional pseudoaccommodative intraocular lenses.
    Alió JL; Patel S
    Ophthalmology; 2005 Nov; 112(11):2009-14. PubMed ID: 16183130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laserinterferometric assessment of pilocarpine-induced movement of an accommodating intraocular lens: a randomized trial.
    Findl O; Kriechbaum K; Menapace R; Koeppl C; Sacu S; Wirtitsch M; Buehl W; Drexler W
    Ophthalmology; 2004 Aug; 111(8):1515-21. PubMed ID: 15288981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept.
    Alió JL; Ben-nun J; Rodríguez-Prats JL; Plaza AB
    J Cataract Refract Surg; 2009 Oct; 35(10):1671-8. PubMed ID: 19781458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the performance of accommodating intraocular lenses using ray tracing.
    Ho A; Manns F; Therese ; Parel JM
    J Cataract Refract Surg; 2006 Jan; 32(1):129-36. PubMed ID: 16516791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.