BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14670620)

  • 1. Chromosomal end-to-end fusions in immortalized mouse embryonic fibroblasts deficient in the DNA-dependent protein kinase catalytic subunit.
    Rebuzzini P; Lisa A; Giulotto E; Mondello C
    Cancer Lett; 2004 Jan; 203(1):79-86. PubMed ID: 14670620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction between DNA-PKcs and telomerase in telomere length maintenance.
    Espejel S; Franco S; Sgura A; Gae D; Bailey SM; Taccioli GE; Blasco MA
    EMBO J; 2002 Nov; 21(22):6275-87. PubMed ID: 12426399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang.
    Goytisolo FA; Samper E; Edmonson S; Taccioli GE; Blasco MA
    Mol Cell Biol; 2001 Jun; 21(11):3642-51. PubMed ID: 11340158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-PKcs is critical for telomere capping.
    Gilley D; Tanaka H; Hande MP; Kurimasa A; Li GC; Oshimura M; Chen DJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15084-8. PubMed ID: 11742099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 53BP1 mediates the fusion of mammalian telomeres rendered dysfunctional by DNA-PKcs loss or inhibition.
    Rybanska-Spaeder I; Ghosh R; Franco S
    PLoS One; 2014; 9(9):e108731. PubMed ID: 25264618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinase activity of DNA-PK is required to protect mammalian telomeres.
    Bailey SM; Brenneman MA; Halbrook J; Nickoloff JA; Ullrich RL; Goodwin EH
    DNA Repair (Amst); 2004 Mar; 3(3):225-33. PubMed ID: 15177038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis.
    Rybanska I; Ishaq O; Chou J; Prakash M; Bakhsheshian J; Huso DL; Franco S
    Oncogene; 2013 Apr; 32(14):1761-71. PubMed ID: 22614020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse.
    Maser RS; Wong KK; Sahin E; Xia H; Naylor M; Hedberg HM; Artandi SE; DePinho RA
    Mol Cell Biol; 2007 Mar; 27(6):2253-65. PubMed ID: 17145779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postreplicative joining of DNA double-strand breaks causes genomic instability in DNA-PKcs-deficient mouse embryonic fibroblasts.
    MartĂ­n M; GenescĂ  A; Latre L; Jaco I; Taccioli GE; Egozcue J; Blasco MA; Iliakis G; Tusell L
    Cancer Res; 2005 Nov; 65(22):10223-32. PubMed ID: 16288010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysfunctional mammalian telomeres join with DNA double-strand breaks.
    Bailey SM; Cornforth MN; Ullrich RL; Goodwin EH
    DNA Repair (Amst); 2004 Apr; 3(4):349-57. PubMed ID: 15010310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes.
    Bailey SM; Meyne J; Chen DJ; Kurimasa A; Li GC; Lehnert BE; Goodwin EH
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14899-904. PubMed ID: 10611310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair factors and telomere-chromosome integrity in mammalian cells.
    Hande MP
    Cytogenet Genome Res; 2004; 104(1-4):116-22. PubMed ID: 15162024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased gene amplification in immortal rodent cells deficient for the DNA-dependent protein kinase catalytic subunit.
    Mondello C; Rebuzzini P; Dolzan M; Edmonson S; Taccioli GE; Giulotto E
    Cancer Res; 2001 Jun; 61(11):4520-5. PubMed ID: 11389084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53-deficient cells display increased sensitivity to anthracyclines after loss of the catalytic subunit of the DNA-dependent protein kinase.
    Fedier A; Moawad A; Haller U; Fink D
    Int J Oncol; 2003 Nov; 23(5):1431-7. PubMed ID: 14532987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray-induced telomeric instability in Atm-deficient mouse cells.
    Undarmaa B; Kodama S; Suzuki K; Niwa O; Watanabe M
    Biochem Biophys Res Commun; 2004 Feb; 315(1):51-8. PubMed ID: 15013424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of telomere dysfunction in the induction of genomic instability by radiation in scid mouse cells.
    Urushibara A; Kodama S; Suzuki K; Desa MB; Suzuki F; Tsutsui T; Watanabe M
    Biochem Biophys Res Commun; 2004 Jan; 313(4):1037-43. PubMed ID: 14706647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA and telomeres: beginnings and endings.
    Bailey SM; Goodwin EH
    Cytogenet Genome Res; 2004; 104(1-4):109-15. PubMed ID: 15162023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion.
    Celli GB; de Lange T
    Nat Cell Biol; 2005 Jul; 7(7):712-8. PubMed ID: 15968270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.
    Wong HP; Mozdarani H; Finnegan C; McIlrath J; Bryant PE; Slijepcevic P
    Cytogenet Genome Res; 2004; 104(1-4):131-6. PubMed ID: 15162026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strand-specific postreplicative processing of mammalian telomeres.
    Bailey SM; Cornforth MN; Kurimasa A; Chen DJ; Goodwin EH
    Science; 2001 Sep; 293(5539):2462-5. PubMed ID: 11577237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.