BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 14670822)

  • 21. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis.
    Baty JW; Hampton MB; Winterbourn CC
    Proteomics; 2002 Sep; 2(9):1261-6. PubMed ID: 12362344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma.
    Tezel G; Yang X; Cai J
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver.
    El-Assal O; Hong F; Kim WH; Radaeva S; Gao B
    Cell Mol Immunol; 2004 Jun; 1(3):205-11. PubMed ID: 16219169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
    Santos NA; Catão CS; Martins NM; Curti C; Bianchi ML; Santos AC
    Arch Toxicol; 2007 Jul; 81(7):495-504. PubMed ID: 17216432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethanol self-administration and alterations in the livers of the cynomolgus monkey, Macaca fascicularis.
    Ivester P; Roberts LJ; Young T; Stafforini D; Vivian J; Lees C; Young J; Daunais J; Friedman D; Rippe RA; Parsons CJ; Grant KA; Cunningham C
    Alcohol Clin Exp Res; 2007 Jan; 31(1):144-55. PubMed ID: 17207113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis.
    Poon HF; Shepherd HM; Reed TT; Calabrese V; Stella AM; Pennisi G; Cai J; Pierce WM; Klein JB; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):1020-34. PubMed ID: 15996793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered hepatic mitochondrial ribosome structure following chronic ethanol consumption.
    Patel VB; Cunningham CC
    Arch Biochem Biophys; 2002 Feb; 398(1):41-50. PubMed ID: 11811947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of oxidized and S-nitrosylated mitochondrial proteins in alcoholic fatty liver of rats.
    Moon KH; Hood BL; Kim BJ; Hardwick JP; Conrads TP; Veenstra TD; Song BJ
    Hepatology; 2006 Nov; 44(5):1218-30. PubMed ID: 17058263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic alcohol feeding impairs mTOR(Ser 2448) phosphorylation in rat hearts.
    Vary TC; Deiter G; Lantry R
    Alcohol Clin Exp Res; 2008 Jan; 32(1):43-51. PubMed ID: 18028531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver.
    Young TA; Bailey SM; Van Horn CG; Cunningham CC
    Alcohol Alcohol; 2006; 41(3):254-60. PubMed ID: 16571619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate reductase activity of mitochondrial aldehyde dehydrogenase (ALDH-2) as a redox sensor for cardiovascular oxidative stress.
    Daiber A; Münzel T
    Methods Mol Biol; 2010; 594():43-55. PubMed ID: 20072908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress and alcoholic liver disease.
    Wu D; Cederbaum AI
    Semin Liver Dis; 2009 May; 29(2):141-54. PubMed ID: 19387914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of ethanol-induced toxicity by mitochondrial NADP(+)-dependent isocitrate dehydrogenase.
    Yang ES; Park JW
    Biochimie; 2009 Aug; 91(8):1020-8. PubMed ID: 19500645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol-induced hepatotoxicity in rats.
    Saravanan N; Rajasankar S; Nalini N
    J Pharm Pharmacol; 2007 Mar; 59(3):445-53. PubMed ID: 17331349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of ethanol administration on components of the ubiquitin proteolytic pathway in rat liver.
    Born LJ; Kharbanda KK; McVicker DL; Zetterman RK; Donohue TM
    Hepatology; 1996 Jun; 23(6):1556-63. PubMed ID: 8675177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of green tea on the activity of aldehyde dehydrogenase (ALDH) in the liver of rats during chronic ethanol consumption.
    Chrostek L; Tomaszewski W; Szmitkowski M
    Rocz Akad Med Bialymst; 2005; 50():220-3. PubMed ID: 16358971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.