BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 14670993)

  • 41. Proliferating cardiac microtubules.
    Cooper G
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H510-1. PubMed ID: 19542487
    [No Abstract]   [Full Text] [Related]  

  • 42. An improved protocol for the isolation and cultivation of embryonic mouse myocytes.
    Rodgers LS; Schnurr DC; Broka D; Camenisch TD
    Cytotechnology; 2009 Mar; 59(2):93-102. PubMed ID: 19475494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cortisol: a growth hormone for the fetal heart?
    Wintour EM
    Endocrinology; 2006 Aug; 147(8):3641-2. PubMed ID: 16847089
    [No Abstract]   [Full Text] [Related]  

  • 44. The people behind the papers - Samantha Swift and Michaela Patterson.
    Development; 2023 Apr; 150(7):. PubMed ID: 37052292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Telomeres Fuse During Cardiomyocyte Maturation.
    Aix E; Gallinat A; Yago-Díez C; Lucas J; Gómez MJ; Benguría A; Freitag P; Cortez-Toledo E; Fernández de Manuel L; García-Cuasimodo L; Sánchez-Iranzo H; Montoya MC; Dopazo A; Sánchez-Cabo F; Mercader N; López JE; Fleischmann BK; Hesse M; Flores I
    Circulation; 2023 May; 147(21):1634-1636. PubMed ID: 37216436
    [No Abstract]   [Full Text] [Related]  

  • 46. Distinguishing Cardiomyocyte Division From Binucleation.
    Kadow ZA; Martin JF
    Circ Res; 2018 Oct; 123(9):1012-1014. PubMed ID: 30355168
    [No Abstract]   [Full Text] [Related]  

  • 47. High-level expression of human calmodulin in E.coli and its effects on cell proliferation.
    Li XJ; Wu JG; Si JL; Guo DW; Xu JP
    World J Gastroenterol; 2000 Aug; 6(4):588-592. PubMed ID: 11819654
    [No Abstract]   [Full Text] [Related]  

  • 48. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP.
    Yang Y; Liu N; He Y; Liu Y; Ge L; Zou L; Song S; Xiong W; Liu X
    Nat Commun; 2018 Apr; 9(1):1504. PubMed ID: 29666364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.
    Feric NT; Radisic M
    Adv Drug Deliv Rev; 2016 Jan; 96():110-34. PubMed ID: 25956564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair.
    Lorts A; Schwanekamp JA; Elrod JW; Sargent MA; Molkentin JD
    Circ Res; 2009 Jan; 104(1):e1-7. PubMed ID: 19038863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility.
    Maillet M; Purcell NH; Sargent MA; York AJ; Bueno OF; Molkentin JD
    J Biol Chem; 2008 Nov; 283(45):31246-55. PubMed ID: 18753132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators.
    Colella M; Grisan F; Robert V; Turner JD; Thomas AP; Pozzan T
    Proc Natl Acad Sci U S A; 2008 Feb; 105(8):2859-64. PubMed ID: 18287024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor.
    Tay LH; Griesbeck O; Yue DT
    Biophys J; 2007 Dec; 93(11):4031-40. PubMed ID: 17704158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2.
    Tallini YN; Ohkura M; Choi BR; Ji G; Imoto K; Doran R; Lee J; Plan P; Wilson J; Xin HB; Sanbe A; Gulick J; Mathai J; Robbins J; Salama G; Nakai J; Kotlikoff MI
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4753-8. PubMed ID: 16537386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardiac myocyte differentiation: the Nkx2.5 and Cripto target genes in P19 clone 6 cells.
    Liu H; Harris TM; Kim HH; Childs G
    Funct Integr Genomics; 2005 Oct; 5(4):218-39. PubMed ID: 15806425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeted expression of calmodulin increases ventricular cardiomyocyte proliferation and deoxyribonucleic acid synthesis during mouse development.
    Colomer JM; Terasawa M; Means AR
    Endocrinology; 2004 Mar; 145(3):1356-66. PubMed ID: 14670993
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice.
    Gruver CL; DeMayo F; Goldstein MA; Means AR
    Endocrinology; 1993 Jul; 133(1):376-88. PubMed ID: 8319584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway.
    Obata K; Nagata K; Iwase M; Odashima M; Nagasaka T; Izawa H; Murohara T; Yamada Y; Yokota M
    Biochem Biophys Res Commun; 2005 Dec; 338(2):1299-305. PubMed ID: 16256941
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adenoviral expression of calmodulin antisense reduces hypertrophy in cultured cardiomyocytes.
    Arruda LH; Cestari IA; Leirner AA; Cestari IN
    Artif Organs; 2007 Apr; 31(4):274-7. PubMed ID: 17437495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Progress of the calcium signal pathway during cardiomyogenesis and cardiomyocyte differentiation].
    Wang YQ; Liu MY; Wu XS
    Yi Chuan; 2004 Mar; 26(2):227-30. PubMed ID: 15639992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.