BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 14671133)

  • 21. Use of laser capture microdissection together with in situ hybridization and real-time PCR to study distribution of latent herpes simplex virus genomes in mouse trigeminal ganglia.
    Chen XP; Mata M; Fink DJ
    Methods Mol Biol; 2005; 293():285-93. PubMed ID: 16028427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The herpes simplex virus type 1 early gene (thymidine kinase) promoter is activated in neurons of brain, but not trigeminal ganglia, of transgenic mice in the absence of viral proteins.
    Loiacono CM; Myers R; Mitchell WJ
    J Neurovirol; 2004 Apr; 10(2):116-22. PubMed ID: 15204930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant.
    Chen SH; Cook WJ; Grove KL; Coen DM
    J Virol; 1998 Aug; 72(8):6710-5. PubMed ID: 9658118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency.
    Thompson RL; Sawtell NM
    J Virol; 2000 Jan; 74(2):965-74. PubMed ID: 10623759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A low thymidine kinase-producing mutant of herpes simplex virus type 1 causes latent trigeminal ganglia infections in mice.
    Gordon Y; Gilden DH; Shtram Y; Asher Y; Tabor E; Wellish M; Devlin M; Snipper D; Hadar J; Becker Y
    Arch Virol; 1983; 76(1):39-49. PubMed ID: 6305312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of latency in mice by herpes simplex virus 1 recombinants that carry insertions affecting regulation of the thymidine kinase gene.
    Sears AE; Meignier B; Roizman B
    J Virol; 1985 Aug; 55(2):410-6. PubMed ID: 2991566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis.
    Efstathiou S; Kemp S; Darby G; Minson AC
    J Gen Virol; 1989 Apr; 70 ( Pt 4)():869-79. PubMed ID: 2543763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal control of herpes simplex virus latency.
    Tenser RB; Edris WA; Hay KA
    Virology; 1993 Aug; 195(2):337-47. PubMed ID: 8393231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation.
    Du T; Han Z; Zhou G; Roizman B
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):E49-55. PubMed ID: 25535379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An M2 Rather than a T
    Lee DH; Ghiasi H
    J Virol; 2018 May; 92(10):. PubMed ID: 29491152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus.
    Tenser RB; Miller RL; Rapp F
    Science; 1979 Aug; 205(4409):915-7. PubMed ID: 224454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Latent acyclovir-resistant herpes simplex virus type 1 in trigeminal ganglia of immunocompetent individuals.
    van Velzen M; van Loenen FB; Meesters RJ; de Graaf M; Remeijer L; Luider TM; Osterhaus AD; Verjans GM
    J Infect Dis; 2012 May; 205(10):1539-43. PubMed ID: 22457282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses.
    Kosz-Vnenchak M; Coen DM; Knipe DM
    J Virol; 1990 Nov; 64(11):5396-402. PubMed ID: 2170678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency.
    Sawtell NM; Thompson RL
    J Virol; 1992 Apr; 66(4):2157-69. PubMed ID: 1312626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of herpes simplex virus reactivation by dipyridamole.
    Tenser RB; Gaydos A; Hay KA
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3657-9. PubMed ID: 11709364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants.
    Katz JP; Bodin ET; Coen DM
    J Virol; 1990 Sep; 64(9):4288-95. PubMed ID: 2166818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus after in vivo complementation.
    Tenser RB; Edris WA
    J Virol; 1987 Jul; 61(7):2171-4. PubMed ID: 3035217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of herpes simplex virus gene expression during latency establishment and reactivation.
    Lachmann RH; Sadarangani M; Atkinson HR; Efstathiou S
    J Gen Virol; 1999 May; 80 ( Pt 5)():1271-1282. PubMed ID: 10355774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of herpes simplex virus thymidine kinase expression in viral pathogenesis and latency.
    Tenser RB
    Intervirology; 1991; 32(2):76-92. PubMed ID: 1851146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The weakly virulent herpes simplex virus type 1 strain KOS-63 establishes peripheral and central nervous system latency following intranasal infection of rabbits, but poorly reactivates in vivo.
    Stroop WG; Banks MC
    J Neuropathol Exp Neurol; 1992 Sep; 51(5):550-9. PubMed ID: 1325537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.