These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 146712)
1. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes. Shigekawa M; Dougherty JP J Biol Chem; 1978 Mar; 253(5):1458-64. PubMed ID: 146712 [No Abstract] [Full Text] [Related]
2. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations. Shigekawa M; Dougherty JP J Biol Chem; 1978 Mar; 253(5):1451-7. PubMed ID: 146711 [No Abstract] [Full Text] [Related]
3. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. I. Characterization of steady state ATP hydrolysis and comparison with that in the presence of KCl. Shigekawa M; Dougherty JP; Katz AM J Biol Chem; 1978 Mar; 253(5):1442-50. PubMed ID: 627548 [No Abstract] [Full Text] [Related]
4. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate. Sumida M; Tonomura Y J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200 [No Abstract] [Full Text] [Related]
5. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J; Hasselbach W Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267 [TBL] [Abstract][Full Text] [Related]
6. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles. Beirăo PS; De Meis L Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033 [TBL] [Abstract][Full Text] [Related]
7. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump. de Meis L J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437 [TBL] [Abstract][Full Text] [Related]
8. Effect of divalent cation bound to the ATPase of sarcoplasmic reticulum. Activation of phosphoenzyme hydrolysis by Mg2+. Shigekawa M; Wakabayashi S; Nakamura H J Biol Chem; 1983 Dec; 258(23):14157-61. PubMed ID: 6227621 [TBL] [Abstract][Full Text] [Related]
9. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle. Suko J; Winkler F; Scharinger B; Hellmann G Biochim Biophys Acta; 1976 Sep; 443(3):571-86. PubMed ID: 134747 [TBL] [Abstract][Full Text] [Related]
10. The role of calcium and magnesium in the adenosine triphosphatase reaction of sarcoplasmic reticulum. Panet R; Pick U; Selinger Z J Biol Chem; 1971 Dec; 246(23):7349-56. PubMed ID: 4256833 [No Abstract] [Full Text] [Related]
11. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum. Suko J; Hasselbach W Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657 [No Abstract] [Full Text] [Related]
12. Reaction mechanism of (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. II. (ATP, ADP)-dependent Ca2+-Ca2+ exchange across the membranes. Takakuwa Y; Kanazawa T J Biol Chem; 1981 Mar; 256(6):2696-700. PubMed ID: 6110659 [TBL] [Abstract][Full Text] [Related]
13. Occlusion of calcium in the ADP-sensitive phosphoenzyme of the adenosine triphosphatase of sarcoplasmic reticulum. Takisawa H; Makinose M J Biol Chem; 1983 Mar; 258(5):2986-92. PubMed ID: 6219108 [TBL] [Abstract][Full Text] [Related]
14. Some kinetic properties of phosphorylated ATPase of sarcoplasmic reticulum formed in the absence of added alkali metal salts. Shigekawa M; Dougherty JP Biochem Biophys Res Commun; 1977 Jun; 76(3):784-9. PubMed ID: 143281 [No Abstract] [Full Text] [Related]
15. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles. Souza DO; de Meis L J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211 [TBL] [Abstract][Full Text] [Related]
16. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum. Gould GW; McWhirter JM; East JM; Lee AG Biochem J; 1987 Aug; 245(3):739-49. PubMed ID: 2959279 [TBL] [Abstract][Full Text] [Related]
17. The mechanism of ATP hydrolysis by sacoplasmic reticulum. Coffey RL; Lagwinska E; Oliver M; Martonosi A Arch Biochem Biophys; 1975 Sep; 170(1):37-48. PubMed ID: 240324 [No Abstract] [Full Text] [Related]
18. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Yoshida H; Tonomura Y J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370 [TBL] [Abstract][Full Text] [Related]
19. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Shigekawa M; Finegan JA; Katz AM J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210 [TBL] [Abstract][Full Text] [Related]
20. ATP reversible Pi exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of a Ca2+ concentration gradient. de Meis L; Sorenson MM Biochemistry; 1975 Jun; 14(12):2739-44. PubMed ID: 125101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]