BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 14671303)

  • 1. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
    Darwin KH; Ehrt S; Gutierrez-Ramos JC; Weich N; Nathan CF
    Science; 2003 Dec; 302(5652):1963-6. PubMed ID: 14671303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiology. Chemical warfare and mycobacterial defense.
    Pieters J; Ploegh H
    Science; 2003 Dec; 302(5652):1900-2. PubMed ID: 14671281
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst.
    Ng VH; Cox JS; Sousa AO; MacMicking JD; McKinney JD
    Mol Microbiol; 2004 Jun; 52(5):1291-302. PubMed ID: 15165233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set.
    Sun R; Converse PJ; Ko C; Tyagi S; Morrison NE; Bishai WR
    Mol Microbiol; 2004 Apr; 52(1):25-38. PubMed ID: 15049808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis.
    Darwin KH; Nathan CF
    Infect Immun; 2005 Aug; 73(8):4581-7. PubMed ID: 16040969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of immunoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells.
    Kotamraju S; Matalon S; Matsunaga T; Shang T; Hickman-Davis JM; Kalyanaraman B
    Free Radic Biol Med; 2006 Mar; 40(6):1034-44. PubMed ID: 16540399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virulence of Mycobacterium avium in mice does not correlate with resistance to nitric oxide.
    Lousada S; Flórido M; Appelberg R
    Microb Pathog; 2007; 43(5-6):243-8. PubMed ID: 17683898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue.
    Darwin KH; Lin G; Chen Z; Li H; Nathan CF
    Mol Microbiol; 2005 Jan; 55(2):561-71. PubMed ID: 15659170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune control of tuberculosis by IFN-gamma-inducible LRG-47.
    MacMicking JD; Taylor GA; McKinney JD
    Science; 2003 Oct; 302(5645):654-9. PubMed ID: 14576437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion.
    Gao LY; Guo S; McLaughlin B; Morisaki H; Engel JN; Brown EJ
    Mol Microbiol; 2004 Sep; 53(6):1677-93. PubMed ID: 15341647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages.
    Rooyakkers AW; Stokes RW
    Microb Pathog; 2005 Sep; 39(3):57-67. PubMed ID: 16084683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis.
    Akaki T; Tomioka H; Shimizu T; Dekio S; Sato K
    Clin Exp Immunol; 2000 Aug; 121(2):302-10. PubMed ID: 10931146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues.
    Lamichhane G; Raghunand TR; Morrison NE; Woolwine SC; Tyagi S; Kandavelou K; Bishai WR
    J Infect Dis; 2006 Nov; 194(9):1233-40. PubMed ID: 17041849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide.
    Axelrod S; Oschkinat H; Enders J; Schlegel B; Brinkmann V; Kaufmann SH; Haas A; Schaible UE
    Cell Microbiol; 2008 Jul; 10(7):1530-45. PubMed ID: 18363878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide.
    Samanovic MI; Tu S; Novák O; Iyer LM; McAllister FE; Aravind L; Gygi SP; Hubbard SR; Strnad M; Darwin KH
    Mol Cell; 2015 Mar; 57(6):984-994. PubMed ID: 25728768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-sensitive hypertension and inducible nitric oxide synthase: form-function dichotomy of a coding region mutation, Mutatis mutandis.
    Loscalzo J
    Circ Res; 2001 Aug; 89(4):292-4. PubMed ID: 11509443
    [No Abstract]   [Full Text] [Related]  

  • 18. 5'-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice.
    Senaratne RH; De Silva AD; Williams SJ; Mougous JD; Reader JR; Zhang T; Chan S; Sidders B; Lee DH; Chan J; Bertozzi CR; Riley LW
    Mol Microbiol; 2006 Mar; 59(6):1744-53. PubMed ID: 16553880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of host susceptibility and virulence of Mycobacterium tuberculosis determines dual role of nitric oxide in the protection and control of inflammation.
    Beisiegel M; Kursar M; Koch M; Loddenkemper C; Kuhlmann S; Zedler U; Stäber M; Hurwitz R; Kaufmann SH
    J Infect Dis; 2009 Apr; 199(8):1222-32. PubMed ID: 19302011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Mycobacterial genes that alter growth and pathology in macrophages and in mice.
    Chang JC; Harik NS; Liao RP; Sherman DR
    J Infect Dis; 2007 Sep; 196(5):788-95. PubMed ID: 17674323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.