BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 14671328)

  • 1. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding.
    Schaap J; Albus H; VanderLeest HT; Eilers PH; Détári L; Meijer JH
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15994-9. PubMed ID: 14671328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase differences between SCN neurons and their role in photoperiodic encoding; a simulation of ensemble patterns using recorded single unit electrical activity patterns.
    Rohling J; Meijer JH; VanderLeest HT; Admiraal J
    J Physiol Paris; 2006; 100(5-6):261-70. PubMed ID: 17628455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of day-length encoding in the SCN: from single-cell to tissue-level organization.
    Rohling J; Wolters L; Meijer JH
    J Biol Rhythms; 2006 Aug; 21(4):301-13. PubMed ID: 16864650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal encoding by the circadian pacemaker of the SCN.
    VanderLeest HT; Houben T; Michel S; Deboer T; Albus H; Vansteensel MJ; Block GD; Meijer JH
    Curr Biol; 2007 Mar; 17(5):468-73. PubMed ID: 17320387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation with behavioral activity and rest implies circadian regulation by SCN neuronal activity levels.
    Houben T; Deboer T; van Oosterhout F; Meijer JH
    J Biol Rhythms; 2009 Dec; 24(6):477-87. PubMed ID: 19926807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod.
    Mrugala M; Zlomanczuk P; Jagota A; Schwartz WJ
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R987-94. PubMed ID: 10749788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time.
    vanderLeest HT; Vansteensel MJ; Duindam H; Michel S; Meijer JH
    Chronobiol Int; 2009 Aug; 26(6):1075-89. PubMed ID: 19731107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization.
    vanderLeest HT; Rohling JH; Michel S; Meijer JH
    PLoS One; 2009; 4(3):e4976. PubMed ID: 19305510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of circadian rhythm of discharges of suprachiasmatic nucleus neurons in rat hypothalamic slices by melatonin.
    Zhou XJ; Jiang XH; Yu GD; Yin QZ
    Sheng Li Xue Bao; 2000 Jun; 52(3):215-9. PubMed ID: 11956567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro.
    Klisch C; Inyushkin A; Mordel J; Karnas D; Pévet P; Meissl H
    Eur J Neurosci; 2009 Jul; 30(1):65-75. PubMed ID: 19519637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock.
    Albus H; Vansteensel MJ; Michel S; Block GD; Meijer JH
    Curr Biol; 2005 May; 15(10):886-93. PubMed ID: 15916945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo.
    Saeb-Parsy K; Dyball RE
    J Biol Rhythms; 2003 Feb; 18(1):26-42. PubMed ID: 12568242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro.
    Jagota A; de la Iglesia HO; Schwartz WJ
    Nat Neurosci; 2000 Apr; 3(4):372-6. PubMed ID: 10725927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period.
    Honma S; Nakamura W; Shirakawa T; Honma K
    Neurosci Lett; 2004 Apr; 358(3):173-6. PubMed ID: 15039109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.
    Meijer JH; Michel S; Vanderleest HT; Rohling JH
    Eur J Neurosci; 2010 Dec; 32(12):2143-51. PubMed ID: 21143668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorganization of the suprachiasmatic nucleus coding for day length.
    Naito E; Watanabe T; Tei H; Yoshimura T; Ebihara S
    J Biol Rhythms; 2008 Apr; 23(2):140-9. PubMed ID: 18375863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro circadian rhythms of the mammalian suprachiasmatic nuclei: comparison of multi-unit and single-unit neuronal activity recordings.
    Prosser RA
    J Biol Rhythms; 1998 Feb; 13(1):30-8. PubMed ID: 9486841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod.
    Brown TM; Piggins HD
    J Biol Rhythms; 2009 Feb; 24(1):44-54. PubMed ID: 19227579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus.
    King VM; Chahad-Ehlers S; Shen S; Harmar AJ; Maywood ES; Hastings MH
    Eur J Neurosci; 2003 Feb; 17(4):822-32. PubMed ID: 12603272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod.
    Buijink MR; Almog A; Wit CB; Roethler O; Olde Engberink AH; Meijer JH; Garlaschelli D; Rohling JH; Michel S
    PLoS One; 2016; 11(12):e0168954. PubMed ID: 28006027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.