BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14671330)

  • 1. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains.
    Yang XL; Otero FJ; Skene RJ; McRee DE; Schimmel P; Ribas de Pouplana L
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15376-80. PubMed ID: 14671330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity.
    Yu Y; Liu Y; Shen N; Xu X; Xu F; Jia J; Jin Y; Arnold E; Ding J
    J Biol Chem; 2004 Feb; 279(9):8378-88. PubMed ID: 14660560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases.
    Retailleau P; Weinreb V; Hu M; Carter CW
    J Mol Biol; 2007 May; 369(1):108-28. PubMed ID: 17428498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria.
    Ribas de Pouplana L; Frugier M; Quinn CL; Schimmel P
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):166-70. PubMed ID: 8552597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis.
    Buddha MR; Crane BR
    J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling.
    Li L; Carter CW
    J Biol Chem; 2013 Nov; 288(48):34736-45. PubMed ID: 24142809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster.
    Han GW; Yang XL; McMullan D; Chong YE; Krishna SS; Rife CL; Weekes D; Brittain SM; Abdubek P; Ambing E; Astakhova T; Axelrod HL; Carlton D; Caruthers J; Chiu HJ; Clayton T; Duan L; Feuerhelm J; Grant JC; Grzechnik SK; Jaroszewski L; Jin KK; Klock HE; Knuth MW; Kumar A; Marciano D; Miller MD; Morse AT; Nigoghossian E; Okach L; Paulsen J; Reyes R; van den Bedem H; White A; Wolf G; Xu Q; Hodgson KO; Wooley J; Deacon AM; Godzik A; Lesley SA; Elsliger MA; Schimmel P; Wilson IA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Oct; 66(Pt 10):1326-34. PubMed ID: 20944229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis.
    Carter CW; Doublié S; Coleman DE
    J Mol Biol; 1994 May; 238(3):346-65. PubMed ID: 8176729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding.
    Praetorius-Ibba M; Stange-Thomann N; Kitabatake M; Ali K; Söll I; Carter CW; Ibba M; Söll D
    Biochemistry; 2000 Oct; 39(43):13136-43. PubMed ID: 11052665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design.
    Koh CY; Kim JE; Napoli AJ; Verlinde CL; Fan E; Buckner FS; Van Voorhis WC; Hol WG
    Mol Biochem Parasitol; 2013 May; 189(1-2):26-32. PubMed ID: 23665145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase.
    Austin J; First EA
    J Biol Chem; 2002 Apr; 277(17):14812-20. PubMed ID: 11856731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.