These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14672567)

  • 1. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations.
    Villa T; Migliavacca F; Gastaldi D; Colombo M; Pietrabissa R
    J Biomech; 2004 Jan; 37(1):45-53. PubMed ID: 14672567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis.
    Cho CH; Murakami T; Sawae Y; Sakai N; Miura H; Kawano T; Iwamoto Y
    Proc Inst Mech Eng H; 2004; 218(4):251-9. PubMed ID: 15376727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the geometry of total knee implant in the sagittal plane using FEA.
    Dargahi J; Najarian S; Amiri S
    Biomed Mater Eng; 2003; 13(4):439-49. PubMed ID: 14646058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic simulation of a displacement-controlled total knee replacement wear tester.
    Lanovaz JL; Ellis RE
    Proc Inst Mech Eng H; 2008 Jul; 222(5):669-81. PubMed ID: 18756686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical center axial hinge knee prosthesis causes lower contact stress on tibial insert and bushing compared with biaxial hinge knee prosthesis.
    Zhang JY; Zhang HR; Tian DM; Wang F; Zhang H; Hu YC
    Knee; 2021 Mar; 29():1-8. PubMed ID: 33524657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses--a biomechanical study.
    Cheng CK; Huang CH; Liau JJ; Huang CH
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):231-6. PubMed ID: 12620786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model.
    Lin CC; Chang CH; Wu CL; Chung KC; Liao IC
    Med Eng Phys; 2004 Jan; 26(1):1-9. PubMed ID: 14644593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A circumferentially flanged tibial tray minimizes bone-tray shear micromotion.
    Barker DS; Tanner KE; Ryd L
    Proc Inst Mech Eng H; 2005 Nov; 219(6):449-56. PubMed ID: 16312104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of monolimb using finite element modelling and statistics-based Taguchi method.
    Lee WC; Zhang M
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):759-66. PubMed ID: 15963612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of the temporal nature of the applied load and the tibial baseplate material on the stress distribution in a three-dimensional model of the human knee joint containing a prosthetic replacement.
    Nambu SN; Lewis G
    Biomed Mater Eng; 2004; 14(2):203-17. PubMed ID: 15156111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.
    Zhao D; Sakoda H; Sawyer WG; Banks SA; Fregly BJ
    J Biomech Eng; 2008 Feb; 130(1):011004. PubMed ID: 18298180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint.
    Liau JJ; Cheng CK; Huang CH; Lo WH
    Clin Biomech (Bristol, Avon); 2002; 17(9-10):698-704. PubMed ID: 12446166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical center and rotating platform hinged knee prosthesis: Finite-element model establishment, verification and contact analysis.
    Zhang JY; Wang J; Tian DM; Jiang DP; Li JJ; Hu YC
    Knee; 2020 Jun; 27(3):731-739. PubMed ID: 32563430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of polyethylene thickness in fixed- and mobile-bearing total knee replacements.
    Shi JF; Wang CJ; Berryman F; Hart W
    Proc Inst Mech Eng H; 2008 Jul; 222(5):657-67. PubMed ID: 18756685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of biomechanical effect of stem-end design in revision TKA using Digital Korean model.
    Kim YH; Kwon OS; Kim K
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):853-8. PubMed ID: 18321621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact stresses in a patient-specific unicompartmental knee replacement.
    van den Heever DJ; Scheffer C; Erasmus P; Dillon E
    Clin Biomech (Bristol, Avon); 2011 Feb; 26(2):159-66. PubMed ID: 20950903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational wear prediction of a total knee replacement from in vivo kinematics.
    Fregly BJ; Sawyer WG; Harman MK; Banks SA
    J Biomech; 2005 Feb; 38(2):305-14. PubMed ID: 15598458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of biomechanics induced by hinge knee prostheses with two different motion axial system.
    Zhang JY; Zhang HR; Tian DM; Wang F; Ren ZP; Hu YC
    Artif Organs; 2021 Jun; 45(6):608-615. PubMed ID: 33236372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.