These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 14672568)

  • 1. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.
    Müller R; Gerber SC; Hayes WC
    Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light.
    Thurner PJ; Wyss P; Voide R; Stauber M; Stampanoni M; Sennhauser U; Müller R
    Bone; 2006 Aug; 39(2):289-99. PubMed ID: 16540385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a testing system to assess torsional cancellous bone failure in conjunction with time-lapsed micro-computed tomographic imaging.
    Nazarian A; Bauernschmitt M; Eberle C; Meier D; Müller R; Snyder BD
    J Biomech; 2008 Dec; 41(16):3496-501. PubMed ID: 18990395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and implementation of a novel mechanical testing system for cellular solids.
    Nazarian A; Stauber M; Müller R
    J Biomed Mater Res B Appl Biomater; 2005 May; 73(2):400-11. PubMed ID: 15682380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing.
    Nazarian A; Meier D; Müller R; Snyder BD
    J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT.
    Pallua JD; Putzer D; Jäger E; Degenhart G; Arora R; Schmölz W
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations of global morphometry in predicting trabecular bone failure.
    Stauber M; Nazarian A; Müller R
    J Bone Miner Res; 2014 Jan; 29(1):134-41. PubMed ID: 23761214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-trabecular strain evolution in human trabecular bone.
    Turunen MJ; Le Cann S; Tudisco E; Lovric G; Patera A; Hall SA; Isaksson H
    Sci Rep; 2020 Aug; 10(1):13788. PubMed ID: 32796859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.
    Hosseini HS; Clouthier AL; Zysset PK
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24384581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative, 3D Visualization of the Initiation and Progression of Vertebral Fractures Under Compression and Anterior Flexion.
    Jackman TM; Hussein AI; Curtiss C; Fein PM; Camp A; De Barros L; Morgan EF
    J Bone Miner Res; 2016 Apr; 31(4):777-88. PubMed ID: 26590372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional digital image correlation technique for strain measurements in microstructures.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2004 Sep; 37(9):1313-20. PubMed ID: 15275838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio-translucent 3-axis mechanical testing rig for the spine in micro-CT.
    Si-Hoe KM; Teoh SH; Teo J
    J Biomech Eng; 2006 Dec; 128(6):957-64. PubMed ID: 17154698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study.
    Tassani S; Matsopoulos GK; Baruffaldi F
    J Biomech; 2012 Jul; 45(11):2035-40. PubMed ID: 22682259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive fatigue behavior of bovine trabecular bone.
    Michel MC; Guo XD; Gibson LJ; McMahon TA; Hayes WC
    J Biomech; 1993; 26(4-5):453-63. PubMed ID: 8478349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
    Mittra E; Rubin C; Qin YX
    J Biomech; 2005 Jun; 38(6):1229-37. PubMed ID: 15863107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.