These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 14672568)

  • 41. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Similarity in the fatigue behavior of trabecular bone across site and species.
    Haddock SM; Yeh OC; Mummaneni PV; Rosenberg WS; Keaveny TM
    J Biomech; 2004 Feb; 37(2):181-7. PubMed ID: 14706320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relating mechanical properties of vertebral trabecular bones to osteoporosis.
    Cesar R; Bravo-Castillero J; Ramos RR; Pereira CAM; Zanin H; Rollo JMDA
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(2):54-68. PubMed ID: 31813291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of microstructural features in regenerating bone using micro computed tomography.
    Jones AC; Sakellariou A; Limaye A; Arns CH; Senden TJ; Sawkins T; Knackstedt MA; Rohner D; Hutmacher DW; Brandwood A; Milthorpe BK
    J Mater Sci Mater Med; 2004 Apr; 15(4):529-32. PubMed ID: 15332630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fatigue microdamage in bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):769-76. PubMed ID: 14986400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical properties of single bovine trabeculae are unaffected by strain rate.
    Szabó ME; Taylor M; Thurner PJ
    J Biomech; 2011 Mar; 44(5):962-7. PubMed ID: 21333291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D shape-dependent thinning method for trabecular bone characterization.
    Jennane R; Almhdie A; Aufort G; Lespessailles E
    Med Phys; 2012 Jan; 39(1):168-78. PubMed ID: 22225286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads.
    Chevalier Y; Charlebois M; Pahr D; Varga P; Heini P; Schneider E; Zysset P
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):477-87. PubMed ID: 18608338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-axial mechanical properties of human trabecular bone.
    Rincón-Kohli L; Zysset PK
    Biomech Model Mechanobiol; 2009 Jun; 8(3):195-208. PubMed ID: 18695984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual-energy CT-based assessment of the trabecular bone in vertebrae.
    Wesarg S; Kirschner M; Becker M; Erdt M; Kafchitsas K; Khan MF
    Methods Inf Med; 2012; 51(5):398-405. PubMed ID: 23038636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatigue of bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):761-8. PubMed ID: 14986399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Failure behaviour of rat vertebrae determined through simultaneous compression testing and micro-CT imaging.
    Morton JJ; Bennison M; Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2018 Mar; 79():73-82. PubMed ID: 29287225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.
    Silva MJ; Gibson LJ
    Bone; 1997 Aug; 21(2):191-9. PubMed ID: 9267695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.