These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 14672982)
1. Heat-shock protein 70 (Hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (genus: Tegula). Tomanek L; Sanford E Biol Bull; 2003 Dec; 205(3):276-84. PubMed ID: 14672982 [TBL] [Abstract][Full Text] [Related]
2. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. Tomanek L; Somero GN J Exp Biol; 2002 Mar; 205(Pt 5):677-85. PubMed ID: 11907057 [TBL] [Abstract][Full Text] [Related]
3. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights. Tomanek L; Somero GN Physiol Biochem Zool; 2000; 73(2):249-56. PubMed ID: 10801403 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability. Tomanek L J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611 [TBL] [Abstract][Full Text] [Related]
5. The Heat-Shock Response: Its Variation, Regulation and Ecological Importance in Intertidal Gastropods (genus Tegula). Tomanek L Integr Comp Biol; 2002 Aug; 42(4):797-807. PubMed ID: 21708778 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (genus Tegula): implications for vertical zonation. Stenseng E; Braby CE; Somero GN Biol Bull; 2005 Apr; 208(2):138-44. PubMed ID: 15837963 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. Tomanek L; Somero GN J Exp Biol; 1999; 202(Pt 21):2925-2936. PubMed ID: 10518474 [TBL] [Abstract][Full Text] [Related]
8. Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Dong Y; Miller LP; Sanders JG; Somero GN Biol Bull; 2008 Oct; 215(2):173-81. PubMed ID: 18840778 [TBL] [Abstract][Full Text] [Related]
9. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators. Gravem SA; Morgan SG Ecology; 2017 Apr; 98(4):1006-1015. PubMed ID: 27935647 [TBL] [Abstract][Full Text] [Related]
10. Natural variation in resistance to desiccation and heat shock protein expression in the land snail Theba pisana along a climatic gradient. Mizrahi T; Goldenberg S; Heller J; Arad Z Physiol Biochem Zool; 2015; 88(1):66-80. PubMed ID: 25590594 [TBL] [Abstract][Full Text] [Related]
11. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Gleason LU; Burton RS Mol Ecol; 2015 Feb; 24(3):610-27. PubMed ID: 25524431 [TBL] [Abstract][Full Text] [Related]
12. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Helmuth BS; Hofmann GE Biol Bull; 2001 Dec; 201(3):374-84. PubMed ID: 11751249 [TBL] [Abstract][Full Text] [Related]
13. Synergy of environmental variables alters the thermal window and heat shock response: an experimental test with the crab Pachygrapsus marmoratus. Madeira D; Narciso L; Diniz MS; Vinagre C Mar Environ Res; 2014 Jul; 98():21-8. PubMed ID: 24836643 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Hamdoun AM; Cheney DP; Cherr GN Biol Bull; 2003 Oct; 205(2):160-9. PubMed ID: 14583513 [TBL] [Abstract][Full Text] [Related]
15. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus. Madeira D; Mendonça V; Dias M; Roma J; Costa PM; Larguinho M; Vinagre C; Diniz MS Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():107-15. PubMed ID: 25582544 [TBL] [Abstract][Full Text] [Related]
16. Heat shock proteins and resistance to desiccation in congeneric land snails. Mizrahi T; Heller J; Goldenberg S; Arad Z Cell Stress Chaperones; 2010 Jul; 15(4):351-63. PubMed ID: 19953352 [TBL] [Abstract][Full Text] [Related]
17. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming. Han GD; Cartwright SR; Ganmanee M; Chan BKK; Adzis KAA; Hutchinson N; Wang J; Hui TY; Williams GA; Dong YW Sci Total Environ; 2019 Jan; 647():763-771. PubMed ID: 30092533 [TBL] [Abstract][Full Text] [Related]
18. Natural annual cycle of heat shock protein expression in land snails: desert versus Mediterranean species of Sphincterochila. Arad Z; Mizrahi T; Goldenberg S; Heller J J Exp Biol; 2010 Oct; 213(Pt 20):3487-95. PubMed ID: 20889829 [TBL] [Abstract][Full Text] [Related]
19. Heat-shock response of the upper intertidal barnacle Balanus glandula: thermal stress and acclimation. Berger MS; Emlet RB Biol Bull; 2007 Jun; 212(3):232-41. PubMed ID: 17565112 [TBL] [Abstract][Full Text] [Related]
20. Preference versus performance: body temperature of the intertidal snail Chlorostoma funebralis. Tepler S; Mach K; Denny M Biol Bull; 2011 Apr; 220(2):107-17. PubMed ID: 21551447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]