These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 14673)

  • 1. pH-dependent Soret difference spectra of the deoxy and carbonmonoxy forms of human hemoglobin and its derivatives.
    Soni SK; Kiesow LA
    Biochemistry; 1977 Mar; 16(6):1165-70. PubMed ID: 14673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of role of beta 146-histidyl and other histidyl residues in the Bohr effect of human normal adult hemoglobin.
    Russu IM; Ho C
    Biochemistry; 1986 Apr; 25(7):1706-16. PubMed ID: 3707904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational kinetics of triligated hemoglobin.
    Ferrone FA; Martino AJ; Basak S
    Biophys J; 1985 Aug; 48(2):269-82. PubMed ID: 4052561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of globin structures on the state of the heme. Ferrous low spin derivatives.
    Perutz MF; Kilmartin JV; Nagai K; Szabo A; Simon SR
    Biochemistry; 1976 Jan; 15(2):378-87. PubMed ID: 1247524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin.
    Kilmartin JV; Breen JJ; Roberts GC; Ho C
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1246-9. PubMed ID: 4515623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study.
    Busch MR; Mace JE; Ho NT; Ho C
    Biochemistry; 1991 Feb; 30(7):1865-77. PubMed ID: 1993201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin.
    Fang TY; Zou M; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 1999 Oct; 38(40):13423-32. PubMed ID: 10529219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the beta 146 histidyl residue in the alkaline Bohr effect of hemoglobin.
    Russu IM; Ho NT; Ho C
    Biochemistry; 1980 Mar; 19(5):1043-52. PubMed ID: 7356961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the pH-dependence of the reaction of hemoglobin with carbon monoxide.
    May RP; Mayer A
    Eur J Biochem; 1975 Apr; 52(3):589-93. PubMed ID: 19242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands.
    Kraus DW; Wittenberg JB
    J Biol Chem; 1990 Sep; 265(27):16043-53. PubMed ID: 2398044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric properties of carbamylated hemoglobins.
    Lee TC; Gibson QH
    J Biol Chem; 1981 May; 256(9):4570-7. PubMed ID: 7217099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-induced shift in hemoglobin spectra: a spectrophotometeric comparison of atlantic cod ( Gadus morhua ) and mammalian hemoglobin.
    Olsen SH; Elvevoll EO
    J Agric Food Chem; 2011 Feb; 59(4):1415-22. PubMed ID: 21235209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectra of photodissociated carbonmonoxy hemoglobin and deoxy hemoglobin at 10 K.
    Ondrias MR; Rousseau DL; Simon SR
    J Biol Chem; 1983 May; 258(9):5638-42. PubMed ID: 6853537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms.
    Song XJ; Yuan Y; Simplaceanu V; Sahu SC; Ho NT; Ho C
    Biochemistry; 2007 Jun; 46(23):6795-803. PubMed ID: 17497935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton nuclear Overhauser effect investigation of the heme pockets in ligated hemoglobin: conformational differences between oxy and carbonmonoxy forms.
    Dalvit C; Ho C
    Biochemistry; 1985 Jul; 24(14):3398-407. PubMed ID: 4041419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation and crystallization of hemoglobins A, S, and C. Probable formation of different nuclei for gelation and crystallization.
    Adachi K; Asakura T
    J Biol Chem; 1981 Feb; 256(4):1824-30. PubMed ID: 7462225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on the quaternary structure change of hemoglobin in the ligation process.
    Arata Y; Seno Y; Otsuka J
    Biochim Biophys Acta; 1988 Oct; 956(3):243-55. PubMed ID: 3167072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pK of the amino terminal groups of carbonmonoxy- and deoxyhemoglobin measured by dinitrophenylation in phosphate buffers.
    Bucci E
    Biophys Chem; 1982 Oct; 16(2):159-63. PubMed ID: 7139049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.