These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 14673)
21. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics. Boffi A; Verzili D; Chiancone E; Leone M; Cupane A; Militello V; Vitrano E; Cordone L; Yu W; Di Iorio EE Biophys J; 1994 Oct; 67(4):1713-23. PubMed ID: 7819503 [TBL] [Abstract][Full Text] [Related]
22. Quantitative evaluation for the role of beta 146 His and beta 143 His residues in the Bohr effect of human hemoglobin in the presence of 0.1 M chloride ion. Matsukawa S; Itatani Y; Mawatari K; Shimokawa Y; Yoneyama Y J Biol Chem; 1984 Sep; 259(18):11479-86. PubMed ID: 6470009 [TBL] [Abstract][Full Text] [Related]
23. Spectrophotometric, electron paramagnetic resonance and oxygen binding studies on the hemoglobin from the marine polychaete Perinereis aibuhitensis (Grübe): comparative physiology of hemoglobin. Tsuneshige A; Imai K; Hori H; Tyuma I; Gotoh T J Biochem; 1989 Sep; 106(3):406-17. PubMed ID: 2558108 [TBL] [Abstract][Full Text] [Related]
24. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects. Sun DP; Zou M; Ho NT; Ho C Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146 [TBL] [Abstract][Full Text] [Related]
25. Kinetic evidence for a role of heme geometry on the modulation of carbon monoxide reactivity in human hemoglobin. Coletta M; Ascenzi P; Brunori M J Biol Chem; 1988 Dec; 263(34):18286-9. PubMed ID: 3192534 [TBL] [Abstract][Full Text] [Related]
26. Role of Bohr group salt bridges in cooperativity in hemoglobin. Kilmartin JV; Imai K; Jones RT; Faruqui AR; Fogg J; Baldwin JM Biochim Biophys Acta; 1978 May; 534(1):15-25. PubMed ID: 26416 [TBL] [Abstract][Full Text] [Related]
27. The interaction of hemoglobin with phosphatidylserine vesicles. Shviro Y; Zilber I; Shaklai N Biochim Biophys Acta; 1982 Apr; 687(1):63-70. PubMed ID: 7074106 [TBL] [Abstract][Full Text] [Related]
28. The solubility of sickle and non-sickle hemoglobins in concentrated phosphate buffer. Adachi K; Asakura T J Biol Chem; 1979 May; 254(10):4079-84. PubMed ID: 35534 [TBL] [Abstract][Full Text] [Related]
29. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Safo MK; Abraham DJ Biochemistry; 2005 Jun; 44(23):8347-59. PubMed ID: 15938624 [TBL] [Abstract][Full Text] [Related]
30. Hemoglobin Bohr effects: atomic origin of the histidine residue contributions. Zheng G; Schaefer M; Karplus M Biochemistry; 2013 Nov; 52(47):8539-55. PubMed ID: 24224786 [TBL] [Abstract][Full Text] [Related]
31. Effect of liganded hemoglobin S and hemoglobin A on the aggregation of deoxy-hemoglobin S. Adachi K; Asakura T J Biol Chem; 1982 May; 257(10):5738-44. PubMed ID: 7068616 [TBL] [Abstract][Full Text] [Related]
32. Determination of the pK values for the alpha-amino groups of human hemoglobin. Garner MH; Bogardt RA; Gurd FR J Biol Chem; 1975 Jun; 250(12):4398-404. PubMed ID: 237898 [TBL] [Abstract][Full Text] [Related]
33. Proton nuclear magnetic resonance studies of hemoglobin Malmö: implications of mutations at homologous positions of the alpha and beta chains. Wiechelman KJ; Fairbanks VF; Ho C Biochemistry; 1976 Apr; 15(7):1414-20. PubMed ID: 1259945 [TBL] [Abstract][Full Text] [Related]
34. Site-directed mutagenesis in hemoglobin: test of functional homology of the F9 amino acid residues of hemoglobin alpha and beta chains. Mawjood AH; Miyazaki G; Kaneko R; Wada Y; Imai K Protein Eng; 2000 Feb; 13(2):113-20. PubMed ID: 10708650 [TBL] [Abstract][Full Text] [Related]
35. Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels. Samuni U; Dantsker D; Juszczak LJ; Bettati S; Ronda L; Mozzarelli A; Friedman JM Biochemistry; 2004 Nov; 43(43):13674-82. PubMed ID: 15504030 [TBL] [Abstract][Full Text] [Related]
36. Effect of the beta6 Glu replaced by Val mutation on the optical activity of hemoglobin S and of its beta subunits. Fronticelli C J Biol Chem; 1978 Apr; 253(7):2288-91. PubMed ID: 632269 [TBL] [Abstract][Full Text] [Related]
37. Differences in spectra of alpha and beta chains of hemoglobin between isolated state and in tetramer. Sugita Y J Biol Chem; 1975 Feb; 250(4):1251-6. PubMed ID: 1112803 [TBL] [Abstract][Full Text] [Related]
38. Structure-function relations in hemoglobin as determined by x-ray absorption spectroscopy. Eisenberger P; Shulman RG; Brown GS; Ogawa S Proc Natl Acad Sci U S A; 1976 Feb; 73(2):491-5. PubMed ID: 1061148 [TBL] [Abstract][Full Text] [Related]
39. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process. Tsai CH; Shen TJ; Ho NT; Ho C Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550 [TBL] [Abstract][Full Text] [Related]
40. Kinetic studies on the reconstitution of deoxyhemoglobin from isolated alpha and beta chains. Kawamura Y; Hasumi H; Nakamura S J Biochem; 1982 Oct; 92(4):1227-33. PubMed ID: 7174642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]