These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14673206)

  • 41. The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear.
    Szapiro G; Vianna MR; McGaugh JL; Medina JH; Izquierdo I
    Hippocampus; 2003; 13(1):53-8. PubMed ID: 12625457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular signal-regulated kinase, synaptic plasticity, and memory.
    Thiels E; Klann E
    Rev Neurosci; 2001; 12(4):327-45. PubMed ID: 11783718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyclin-dependent kinase 5 activators p35 and p39 facilitate formation of functional synapses.
    Johansson JU; Lilja L; Chen XL; Higashida H; Meister B; Noda M; Zhong ZG; Yokoyama S; Berggren PO; Bark C
    Brain Res Mol Brain Res; 2005 Aug; 138(2):215-27. PubMed ID: 15908038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning.
    Tyler WJ; Alonso M; Bramham CR; Pozzo-Miller LD
    Learn Mem; 2002; 9(5):224-37. PubMed ID: 12359832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. "The seven sins" of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation?
    Arshavsky YI
    Prog Neurobiol; 2006 Oct; 80(3):99-113. PubMed ID: 17074430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain plasticity mechanisms and memory: a party of four.
    Bruel-Jungerman E; Davis S; Laroche S
    Neuroscientist; 2007 Oct; 13(5):492-505. PubMed ID: 17901258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glial protein S100B modulates long-term neuronal synaptic plasticity.
    Nishiyama H; Knopfel T; Endo S; Itohara S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):4037-42. PubMed ID: 11891290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity.
    Borodinova AA; Zuzina AB; Balaban PM
    Biochemistry (Mosc); 2017 Mar; 82(3):243-256. PubMed ID: 28320265
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Serine proteases regulating synaptic plasticity.
    Shiosaka S
    Anat Sci Int; 2004 Sep; 79(3):137-44. PubMed ID: 15453614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of myristoylated alanine-rich C kinase substrate (MARCKS) overexpression on hippocampus-dependent learning and hippocampal synaptic plasticity in MARCKS transgenic mice.
    McNamara RK; Hussain RJ; Simon EJ; Stumpo DJ; Blackshear PJ; Abel T; Lenox RH
    Hippocampus; 2005; 15(5):675-83. PubMed ID: 15889447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation.
    Shalin SC; Hernandez CM; Dougherty MK; Morrison DK; Sweatt JD
    Neuron; 2006 Jun; 50(5):765-79. PubMed ID: 16731514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclin-dependent kinase 5 is required for associative learning.
    Fischer A; Sananbenesi F; Schrick C; Spiess J; Radulovic J
    J Neurosci; 2002 May; 22(9):3700-7. PubMed ID: 11978846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain.
    McCarberg B; Peppin J
    Pain Med; 2019 Dec; 20(12):2421-2437. PubMed ID: 30865778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular determinants mediating effects of acute stress on hippocampus-dependent synaptic plasticity and learning.
    Blank T; Nijholt I; Spiess J
    Mol Neurobiol; 2004 Apr; 29(2):131-8. PubMed ID: 15126681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oligodendrocyte-specific loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory.
    Luo F; Zhang J; Burke K; Romito-DiGiacomo RR; Miller RH; Yang Y
    Exp Neurol; 2018 Aug; 306():92-104. PubMed ID: 29729246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation.
    Tokuda M; Hatase O
    Mol Neurobiol; 1998; 17(1-3):137-56. PubMed ID: 9887450
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel insights into the beneficial and detrimental actions of cdk5.
    Giese KP
    Mol Interv; 2007 Oct; 7(5):246-8. PubMed ID: 17932412
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The next generation of approaches to investigate the link between synaptic plasticity and learning.
    Humeau Y; Choquet D
    Nat Neurosci; 2019 Oct; 22(10):1536-1543. PubMed ID: 31477899
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Historical review of research on protein kinase C in learning and memory.
    Van der Zee EA; Douma BR
    Prog Neuropsychopharmacol Biol Psychiatry; 1997 Apr; 21(3):379-406. PubMed ID: 9153065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.