These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 14673469)
1. Mutations responsible for 3-phosphoserine phosphatase deficiency. Veiga-da-Cunha M; Collet JF; Prieur B; Jaeken J; Peeraer Y; Rabbijns A; Van Schaftingen E Eur J Hum Genet; 2004 Feb; 12(2):163-6. PubMed ID: 14673469 [TBL] [Abstract][Full Text] [Related]
2. Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate. Collet JF; Gerin I; Rider MH; Veiga-da-Cunha M; Van Schaftingen E FEBS Lett; 1997 May; 408(3):281-4. PubMed ID: 9188776 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. Collet JF; Stroobant V; Van Schaftingen E J Biol Chem; 1999 Nov; 274(48):33985-90. PubMed ID: 10567362 [TBL] [Abstract][Full Text] [Related]
4. Mutation of the conserved domains of two inositol polyphosphate 5-phosphatases. Jefferson AB; Majerus PW Biochemistry; 1996 Jun; 35(24):7890-4. PubMed ID: 8672490 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of phosphoanhydride cleavage by baculovirus phosphatase. Martins A; Shuman S J Biol Chem; 2000 Nov; 275(45):35070-6. PubMed ID: 10954717 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. Minagawa T; Ijuin T; Mochizuki Y; Takenawa T J Biol Chem; 2001 Jun; 276(25):22011-5. PubMed ID: 11274189 [TBL] [Abstract][Full Text] [Related]
7. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. Collet JF; Stroobant V; Pirard M; Delpierre G; Van Schaftingen E J Biol Chem; 1998 Jun; 273(23):14107-12. PubMed ID: 9603909 [TBL] [Abstract][Full Text] [Related]
8. Membrane localization of Src homology 2-containing inositol 5'-phosphatase 2 via Shc association is required for the negative regulation of insulin signaling in Rat1 fibroblasts overexpressing insulin receptors. Ishihara H; Sasaoka T; Ishiki M; Wada T; Hori H; Kagawa S; Kobayashi M Mol Endocrinol; 2002 Oct; 16(10):2371-81. PubMed ID: 12351701 [TBL] [Abstract][Full Text] [Related]
9. Amino acid residues involved in substrate recognition of the Escherichia coli Orf135 protein. Iida E; Satou K; Mishima M; Kojima C; Harashima H; Kamiya H Biochemistry; 2005 Apr; 44(15):5683-9. PubMed ID: 15823026 [TBL] [Abstract][Full Text] [Related]
10. The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. Lin J; Abeygunawardana C; Frick DN; Bessman MJ; Mildvan AS Biochemistry; 1996 May; 35(21):6715-26. PubMed ID: 8639622 [TBL] [Abstract][Full Text] [Related]
11. Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus. Chiba Y; Oshima K; Arai H; Ishii M; Igarashi Y J Biol Chem; 2012 Apr; 287(15):11934-41. PubMed ID: 22337887 [TBL] [Abstract][Full Text] [Related]
12. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri. Carrillo JB; Gomez-Casati DF; Martín M; Busi MV PLoS One; 2018; 13(1):e0191621. PubMed ID: 29360855 [TBL] [Abstract][Full Text] [Related]
13. ThrH, a homoserine kinase isozyme with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa. Patte JC; Clepet C; Bally M; Borne F; Méjean V; Foglino M Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():845-853. PubMed ID: 10220164 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the charged residues of the amino terminus of rat liver fructose 6-phosphate,2-kinase:Fructose 2,6-bisphosphatase: effects on regulation. Wu RF; Uyeda K Arch Biochem Biophys; 1999 Nov; 371(1):15-23. PubMed ID: 10525284 [TBL] [Abstract][Full Text] [Related]
15. Rv2131c gene product: an unconventional enzyme that is both inositol monophosphatase and fructose-1,6-bisphosphatase. Gu X; Chen M; Shen H; Jiang X; Huang Y; Wang H Biochem Biophys Res Commun; 2006 Jan; 339(3):897-904. PubMed ID: 16325768 [TBL] [Abstract][Full Text] [Related]
16. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure. Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003 [TBL] [Abstract][Full Text] [Related]
17. Discovery of an intermolecular disulfide bond required for the thermostability of a heterodimeric protein from the thermophile Hydrogenobacter thermophilus. Kim KT; Chiba Y; Arai H; Ishii M Biosci Biotechnol Biochem; 2016; 80(2):232-40. PubMed ID: 26360333 [TBL] [Abstract][Full Text] [Related]
18. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. Shima S; Matsui H; Tahara S; Imai R FEBS J; 2007 Mar; 274(5):1192-201. PubMed ID: 17257172 [TBL] [Abstract][Full Text] [Related]
19. The difference in the carboxy-terminal sequence is responsible for the difference in the activity of chicken and rat liver fructose-2,6-bisphosphatase. Zhu Z; Ling S; Yang QH; Li L Biol Chem; 2000 Dec; 381(12):1195-202. PubMed ID: 11209754 [TBL] [Abstract][Full Text] [Related]
20. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131. Lu Z; Dunaway-Mariano D; Allen KN Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]