BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14673863)

  • 1. Theoretical studies on the mode of inhibition of ribonucleotide reductase by 2'-substituted substrate analogues.
    Fernandes PA; Ramos MJ
    Chemistry; 2003 Dec; 9(23):5916-25. PubMed ID: 14673863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on the mechanism of inhibition of Ribonucleotide Reductase by (E)-2'-Fluoromethylene-2'-deoxycitidine-5'-diphosphate.
    Fernandes PA; Ramos MJ
    J Am Chem Soc; 2003 May; 125(20):6311-22. PubMed ID: 12785865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme ribonucleotide reductase: unraveling an enigmatic paradigm of enzyme inhibition by furanone derivatives.
    Cerqueira NM; Fernandes PA; Ramos MJ
    J Phys Chem B; 2006 Oct; 110(42):21272-81. PubMed ID: 17048956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the inhibition of ribonucleotide reductase by 2'-mercapto-2'-deoxyribonucleoside-5'-diphosphates.
    Pereira S; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2005 Apr; 127(14):5174-9. PubMed ID: 15810852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of ribonucleotide reductase mechanism-based inhibition by 2'-azido-2'-deoxyribonucleoside 5'-diphosphates.
    Pereira S; Fernandes PA; Ramos MJ
    J Comput Chem; 2004 Jan; 25(2):227-37. PubMed ID: 14648621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2'-azido-2'-deoxyuridine-5'-diphosphate: trapping of the 3'-ketonucleotide.
    Fritscher J; Artin E; Wnuk S; Bar G; Robblee JH; Kacprzak S; Kaupp M; Griffin RG; Bennati M; Stubbe J
    J Am Chem Soc; 2005 Jun; 127(21):7729-38. PubMed ID: 15913363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of ribonucleotide reductase by (E)-2'-fluoromethylene-2'-deoxycytidine 5'-diphosphate: a paradigm for nucleotide mechanism-based inhibitors.
    van der Donk WA; Yu G; Silva DJ; Stubbe J; McCarthy JR; Jarvi ET; Matthews DP; Resvick RJ; Wagner E
    Biochemistry; 1996 Jun; 35(25):8381-91. PubMed ID: 8679596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway.
    Seyedsayamdost MR; Yee CS; Reece SY; Nocera DG; Stubbe J
    J Am Chem Soc; 2006 Feb; 128(5):1562-8. PubMed ID: 16448127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleotide reductase: a mechanistic portrait of substrate analogues inhibitors.
    Perez MA; Cerqueira NM; Fernandes PA; Ramos MJ
    Curr Med Chem; 2010; 17(26):2854-72. PubMed ID: 20858168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of a new substrate-derived radical during inactivation of ribonucleotide reductase from Escherichia coli by gemcitabine 5'-diphosphate.
    van der Donk WA; Yu G; Pérez L; Sanchez RJ; Stubbe J; Samano V; Robins MJ
    Biochemistry; 1998 May; 37(18):6419-26. PubMed ID: 9572859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stable FeIII-FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase.
    Voevodskaya N; Lendzian F; Gräslund A
    Biochem Biophys Res Commun; 2005 May; 330(4):1213-6. PubMed ID: 15823572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonucleotide reductases: radical chemistry and inhibition at the active site.
    Robins MJ
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):519-34. PubMed ID: 14565227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of the manganese-containing ribonucleotide reductase from Chlamydia trachomatis: why manganese is needed in the active complex.
    Roos K; Siegbahn PE
    Biochemistry; 2009 Mar; 48(9):1878-87. PubMed ID: 19220003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass.
    Högbom M; Stenmark P; Voevodskaya N; McClarty G; Gräslund A; Nordlund P
    Science; 2004 Jul; 305(5681):245-8. PubMed ID: 15247479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystals of the ribonucleotide reductase R2 protein from Chlamydia trachomatis obtained by heavy-atom co-crystallization.
    Stenmark P; Högbom M; Roshick C; McClarty G; Nordlund P
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):376-8. PubMed ID: 14747731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligopeptide inhibition of class I ribonucleotide reductases.
    Cooperman BS
    Biopolymers; 2003; 71(2):117-31. PubMed ID: 12767114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding ribonucleotide reductase inactivation by gemcitabine.
    Cerqueira NM; Fernandes PA; Ramos MJ
    Chemistry; 2007; 13(30):8507-15. PubMed ID: 17636467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular dichroism and magnetic circular dichroism studies of the active site of p53R2 from human and mouse: iron binding and nature of the biferrous site relative to other ribonucleotide reductases.
    Wei PP; Tomter AB; Røhr AK; Andersson KK; Solomon EI
    Biochemistry; 2006 Nov; 45(47):14043-51. PubMed ID: 17115699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.