These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 14673925)

  • 1. Breaking down barriers: the liaison between sigmatropic shifts, electrocyclic reactions, and three-center cations.
    Hoffmann R; Tantillo DJ
    Angew Chem Int Ed Engl; 2003; 42(47):5877-82. PubMed ID: 14673925
    [No Abstract]   [Full Text] [Related]  

  • 2. Hiscotropic rearrangements: hybrids of electrocyclic and sigmatropic reactions.
    Nouri DH; Tantillo DJ
    J Org Chem; 2006 May; 71(10):3686-95. PubMed ID: 16674038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the aromaticity of transition states in pericyclic reactions.
    Sakai S
    J Phys Chem A; 2006 May; 110(19):6339-44. PubMed ID: 16686470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem pseudopericyclic reactions: [1,5]-X sigmatropic shift/6pi-electrocyclic ring closure converting N-(2-X-carbonyl)phenyl ketenimines into 2-X-quinolin-4(3H)-ones.
    Alajarín M; Ortín MM; Sanchez-Andrada P; Vidal A
    J Org Chem; 2006 Oct; 71(21):8126-39. PubMed ID: 17025302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallo-organic domino reactions: C-H versus C-C bond breaking.
    Tocher DA; Drew MG; Nag S; Pal PK; Datta D
    Chemistry; 2007; 13(8):2230-7. PubMed ID: 17171727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel parallel reaction between a [1,5] sigmatropic alkylthio shift and a [1,5] sigmatropic hydrogen shift observed in a 2H-azepine ring.
    Kubota Y; Satake K; Okamoto H; Kimura M
    Org Lett; 2006 Nov; 8(24):5469-72. PubMed ID: 17107049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The [1, 3] O-to-C rearrangement: opportunities for stereoselective synthesis.
    Nasveschuk CG; Rovis T
    Org Biomol Chem; 2008 Jan; 6(2):240-54. PubMed ID: 18174990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudopericyclic design drives antara-antara [1,5] methylene sigmatropic shifts from a stepwise to a concerted mechanism.
    López CS; Nieto Faza O; Souto JA; Alvarez R; De Lera AR
    J Comput Chem; 2007 Jun; 28(8):1411-6. PubMed ID: 17330879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on the electrocyclic reactions of bis(allene) and vinylallene. Role of allene group.
    Sakai S
    J Phys Chem A; 2006 Aug; 110(30):9443-50. PubMed ID: 16869695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT study of the thermal, orbital symmetry forbidden, cyclophanediene to dihydropyrene electrocyclic reaction. Predictions to improve the dimethyldihydropyrene photoswitches.
    Williams RV; Edwards WD; Mitchell RH; Robinson SG
    J Am Chem Soc; 2005 Nov; 127(46):16207-14. PubMed ID: 16287311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stereomutations and stereochemically elucidated [1,3]-carbon sigmatropic shifts of 1-(E)-propenyl-2-methylcyclobutanes giving 3,4-dimethylcyclohexenes.
    Baldwin JE; Burrell RC
    J Am Chem Soc; 2003 Dec; 125(51):15869-77. PubMed ID: 14677979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of phthalimidine formation via o-phthalaldehyde monoimines. New [1,5]-H sigmatropic rearrangements in molecules with the 5-aza-2,4-pentadienal skeleton.
    Alajarín M; Sánchez-Andrada P; López-Leonardo C; Alvarez A
    J Org Chem; 2005 Sep; 70(19):7617-23. PubMed ID: 16149790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved reaction and activation energies of [4+2] cycloadditions, [3,3] sigmatropic rearrangements and electrocyclizations with the spin-component-scaled MP2 method.
    Goumans TP; Ehlers AW; Lammertsma K; Würthwein EU; Grimme S
    Chemistry; 2004 Dec; 10(24):6468-75. PubMed ID: 15540273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex polycyclic lactams from pericyclic cascade reactions of Zincke aldehydes.
    Steinhardt SE; Vanderwal CD
    J Am Chem Soc; 2009 Jun; 131(22):7546-7. PubMed ID: 19449870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation energies of sigmatropic shifts in propene and acetone enolate from the anti-Hermitian contracted Schrödinger equation.
    Foley JJ; Rothman AE; Mazziotti DA
    J Chem Phys; 2009 May; 130(18):184112. PubMed ID: 19449913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent effects in eight-electron electrocyclic reactions.
    Lecea B; Arrieta A; Cossío FP
    J Org Chem; 2005 Feb; 70(3):1035-41. PubMed ID: 15675865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors controlling the alkyne prins cyclization: the stability of dihydropyranyl cations.
    Miranda PO; Ramírez MA; Martín VS; Padrón JI
    Chemistry; 2008; 14(20):6260-8. PubMed ID: 18512867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular rearrangements through thermal [1,3] carbon shifts.
    Baldwin JE; Leber PA
    Org Biomol Chem; 2008 Jan; 6(1):36-47. PubMed ID: 18075644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [3,3]-Sigmatropic shifts of N-allylhydrazones: quantum chemical comparison of concerted and radical cation pathways.
    Siebert MR; Tantillo DJ
    Org Lett; 2008 Aug; 10(15):3219-22. PubMed ID: 18582074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ellipticity: a convenient tool to characterize electrocyclic reactions.
    López CS; Nieto Faza O; Cossío FP; York DM; de Lera AR
    Chemistry; 2005 Mar; 11(6):1734-8. PubMed ID: 15669038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.