These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14674271)

  • 1. Controlling biomolecular crystallization by understanding the distinct effects of PEGs and salts on solubility.
    Finet S; Vivarès D; Bonneté F; Tardieu A
    Methods Enzymol; 2003; 368():105-29. PubMed ID: 14674271
    [No Abstract]   [Full Text] [Related]  

  • 2. Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules.
    Tardieu A; Bonneté F; Finet S; Vivarès D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1549-53. PubMed ID: 12351859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crystallization screen based on alternative polymeric precipitants.
    Grimm C; Chari A; Reuter K; Fischer U
    Acta Crystallogr D Biol Crystallogr; 2010 Jun; 66(Pt 6):685-97. PubMed ID: 20516621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attempts to rationalize protein crystallization using relative crystallizability.
    Zhu DW; Garneau A; Mazumdar M; Zhou M; Xu GJ; Lin SX
    J Struct Biol; 2006 Jun; 154(3):297-302. PubMed ID: 16651006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins.
    Jancarik J; Pufan R; Hong C; Kim SH; Kim R
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1670-3. PubMed ID: 15333951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media.
    Arleth L; Ashok B; Onyuksel H; Thiyagarajan P; Jacob J; Hjelm RP
    Langmuir; 2005 Apr; 21(8):3279-90. PubMed ID: 15807565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of catalytic subunit of adenosine cyclic monophosphate-dependent protein kinase.
    Zheng JH; Knighton DR; Parello J; Taylor SS; Sowadski JM
    Methods Enzymol; 1991; 200():508-21. PubMed ID: 1956335
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):38-43. PubMed ID: 18809481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Synchrotron X-ray small-angle scattering measurement].
    Fujisawa T
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1687-92. PubMed ID: 15377001
    [No Abstract]   [Full Text] [Related]  

  • 10. Hydration of proteins: SAXS study of native and methoxy polyethyleneglycol (mPEG)-modified L-asparaginase and bovine serum albumin in mPEG solutions.
    Murthy NS; Knox JR
    Biopolymers; 2004 Aug; 74(6):457-66. PubMed ID: 15274089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the molecular size distribution of polyethylene glycols by CE-UV versus HPLC with evaporative light scattering detection.
    Brinz D; Holzgrabe U
    Electrophoresis; 2008 Sep; 29(17):3605-11. PubMed ID: 18803222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and shape determination of proteins in solution by a noninvasive depolarized dynamic light scattering instrument.
    Chayen N; Dieckmann M; Dierks K; Fromme P
    Ann N Y Acad Sci; 2004 Nov; 1027():20-7. PubMed ID: 15644342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of foot-and-mouth disease virus 3C protease: surface mutagenesis and a novel crystal-optimization strategy.
    Birtley JR; Curry S
    Acta Crystallogr D Biol Crystallogr; 2005 May; 61(Pt 5):646-50. PubMed ID: 15858279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three commercial sparse-matrix crystallization screens.
    Wooh JW; Kidd RD; Martin JL; Kobe B
    Acta Crystallogr D Biol Crystallogr; 2003 Apr; 59(Pt 4):769-72. PubMed ID: 12657807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of buffer solutions for protein crystallization.
    Gosavi RA; Mueser TC; Schall CA
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):506-14. PubMed ID: 18453686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches.
    Izaac A; Schall CA; Mueser TC
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):833-42. PubMed ID: 16790940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dynamic light scattering].
    Kato H
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1676-80. PubMed ID: 15376999
    [No Abstract]   [Full Text] [Related]  

  • 19. New insights into the initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation.
    Impéror-Clerc M; Grillo I; Khodakov AY; Durand D; Zholobenko VL
    Chem Commun (Camb); 2007 Feb; (8):834-6. PubMed ID: 17308647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring bovine pancreatic trypsin inhibitor phase transitions.
    Grouazel S; Bonneté F; Astier JP; Ferté N; Perez J; Veesler S
    J Phys Chem B; 2006 Oct; 110(39):19664-70. PubMed ID: 17004835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.