These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 14674521)
1. Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye. Knudson JA; Meikle T; DeLuca TH J Environ Qual; 2003; 32(6):2001-6. PubMed ID: 14674521 [TBL] [Abstract][Full Text] [Related]
2. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888 [TBL] [Abstract][Full Text] [Related]
3. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
4. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Xia YS; Chen BD; Christie P; Smith FA; Wang YS; Li XL J Environ Sci (China); 2007; 19(10):1245-51. PubMed ID: 18062425 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Zhang X; Ren BH; Wu SL; Sun YQ; Lin G; Chen BD Chemosphere; 2015 Jan; 119():224-230. PubMed ID: 25016555 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA; Andrade SA; Souza SC; Schiavinato MA Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172 [TBL] [Abstract][Full Text] [Related]
7. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Chen BD; Zhu YG; Duan J; Xiao XY; Smith SE Environ Pollut; 2007 May; 147(2):374-80. PubMed ID: 16764975 [TBL] [Abstract][Full Text] [Related]
8. Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris. Alam MZ; Hoque MA; Ahammed GJ; Carpenter-Boggs L PLoS One; 2019; 14(5):e0211441. PubMed ID: 31095573 [TBL] [Abstract][Full Text] [Related]
9. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Dong Y; Zhu YG; Smith FA; Wang Y; Chen B Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670 [TBL] [Abstract][Full Text] [Related]
11. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L.). Chen XH; Zhao B Chemosphere; 2007 Jul; 68(8):1548-55. PubMed ID: 17475308 [TBL] [Abstract][Full Text] [Related]
12. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Li J; Sun Y; Jiang X; Chen B; Zhang X Ecotoxicol Environ Saf; 2018 Aug; 157():235-243. PubMed ID: 29625397 [TBL] [Abstract][Full Text] [Related]
13. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Orłowska E; Godzik B; Turnau K Environ Pollut; 2012 Sep; 168():121-30. PubMed ID: 22609863 [TBL] [Abstract][Full Text] [Related]
14. Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zea mays L.) cultivated on an arsenic-contaminated soil. Cattani I; Beone GM; Gonnelli C Environ Sci Pollut Res Int; 2015 May; 22(9):6570-7. PubMed ID: 25716900 [TBL] [Abstract][Full Text] [Related]
15. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Chen B; Tang X; Zhu Y; Christie P Sci China C Life Sci; 2005 May; 48 Suppl 1():156-64. PubMed ID: 16089342 [TBL] [Abstract][Full Text] [Related]
16. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
17. Leucanthemum vulgare lam. germination, growth and mycorrhizal symbiosis under crude oil contamination. Noori AS; Maivan HZ; Alaie E Int J Phytoremediation; 2014; 16(7-12):962-70. PubMed ID: 24933896 [TBL] [Abstract][Full Text] [Related]
19. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. Schneider J; Labory CR; Rangel WM; Alves E; Guilherme LR J Hazard Mater; 2013 Nov; 262():1245-58. PubMed ID: 22704769 [TBL] [Abstract][Full Text] [Related]
20. Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Qin H; Wang J; Wang J; Lin X Ecotoxicol Environ Saf; 2019 Jan; 167():376-384. PubMed ID: 30366271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]