These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 14674521)
21. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil. García I; Mendoza R Plant Biol (Stuttg); 2012 Nov; 14(6):964-71. PubMed ID: 22512871 [TBL] [Abstract][Full Text] [Related]
22. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Schneider J; Bundschuh J; Rangel WM; Guilherme LRG Environ Pollut; 2017 May; 224():125-135. PubMed ID: 28214191 [TBL] [Abstract][Full Text] [Related]
23. Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment. Verdugo C; Sánchez P; Santibáñez C; Urrestarazu P; Bustamante E; Silva Y; Gourdon D; Ginocchio R Int J Phytoremediation; 2011 Feb; 13(2):107-25. PubMed ID: 21598780 [TBL] [Abstract][Full Text] [Related]
24. Responses of bioaugmented ryegrass to PAH soil contamination. Li JH; Yu XZ; Wu SC; Wang XR; Wang SH; Tam NF; Wong MH Int J Phytoremediation; 2011; 13(5):441-55. PubMed ID: 21598775 [TBL] [Abstract][Full Text] [Related]
25. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Anawar HM; Rengel Z; Damon P; Tibbett M Environ Pollut; 2018 Feb; 233():1003-1012. PubMed ID: 29033177 [TBL] [Abstract][Full Text] [Related]
26. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Leung HM; Ye ZH; Wong MH Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023 [TBL] [Abstract][Full Text] [Related]
27. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Shen H; Christie P; Li X Environ Geochem Health; 2006; 28(1-2):111-9. PubMed ID: 16528586 [TBL] [Abstract][Full Text] [Related]
28. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Liao JP; Lin XG; Cao ZH; Shi YQ; Wong MH Chemosphere; 2003 Feb; 50(6):847-53. PubMed ID: 12688501 [TBL] [Abstract][Full Text] [Related]
29. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
30. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Xu P; Christie P; Liu Y; Zhang J; Li X Environ Pollut; 2008 Nov; 156(1):215-20. PubMed ID: 18280625 [TBL] [Abstract][Full Text] [Related]
31. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils]. Wang F; Guo W; Ma PK; Pan L; Zhang J Huan Jing Ke Xue; 2016 Jan; 37(1):309-16. PubMed ID: 27078972 [TBL] [Abstract][Full Text] [Related]
32. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Stewart LI; Hamel C; Hogue R; Moutoglis P Mycorrhiza; 2005 Nov; 15(8):612-619. PubMed ID: 16059721 [TBL] [Abstract][Full Text] [Related]
33. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112 [TBL] [Abstract][Full Text] [Related]
34. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Chan WF; Li H; Wu FY; Wu SC; Wong MH J Hazard Mater; 2013 Nov; 262():1116-22. PubMed ID: 22940287 [TBL] [Abstract][Full Text] [Related]
35. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Liu M; Che Y; Wang L; Zhao Z; Zhang Y; Wei L; Xiao Y Chemosphere; 2019 Nov; 235():32-39. PubMed ID: 31255763 [TBL] [Abstract][Full Text] [Related]
36. Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd. de Fátima Pedroso D; Barbosa MV; Dos Santos JV; Pinto FA; Siqueira JO; Carneiro MAC Bull Environ Contam Toxicol; 2018 Sep; 101(3):386-391. PubMed ID: 30066147 [TBL] [Abstract][Full Text] [Related]
37. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Wu FY; Ye ZH; Wong MH Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126 [TBL] [Abstract][Full Text] [Related]
38. Intraspecific ploidy variation: A hidden, minor player in plant-soil-mycorrhizal fungi interactions. Sudová R; Pánková H; Rydlová J; Münzbergová Z; Suda J Am J Bot; 2014 Jan; 101(1):26-33. PubMed ID: 24388962 [TBL] [Abstract][Full Text] [Related]
39. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. Ning J; Cumming JR J Exp Bot; 2001 Sep; 52(362):1883-91. PubMed ID: 11520877 [TBL] [Abstract][Full Text] [Related]
40. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Chen B; Zhu YG; Zhang X; Jakobsen I Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]