These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 14674549)
41. Determination of radionuclide exchangeability in freshwater systems. Bunker DJ; Smith JT; Livens FR; Hilton J Sci Total Environ; 2000 Dec; 263(1-3):171-83. PubMed ID: 11194151 [TBL] [Abstract][Full Text] [Related]
42. Interception of radionuclides by planophile crops: A simple semi-empirical modelling approach in case of nuclear accident fallout. Cristina A; Samson R; Horemans N; Van Hees M; Wannijn J; Bruggeman M; Sweeck L Environ Pollut; 2020 Nov; 266(Pt 3):115308. PubMed ID: 32835917 [TBL] [Abstract][Full Text] [Related]
43. Non-targeted metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds. Kårlund A; Hanhineva K; Lehtonen M; McDougall GJ; Stewart D; Karjalainen RO J Sci Food Agric; 2017 May; 97(7):2182-2190. PubMed ID: 27611634 [TBL] [Abstract][Full Text] [Related]
44. Foliar transfer into the biosphere: review of translocation factors to cereal grains. Colle C; Madoz-Escande C; Leclerc E J Environ Radioact; 2009 Sep; 100(9):683-9. PubMed ID: 19019504 [TBL] [Abstract][Full Text] [Related]
45. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). Wu H; Li H; Chen H; Qi Q; Ding Q; Xue J; Ding J; Jiang X; Hou X; Li Y BMC Plant Biol; 2019 Feb; 19(1):73. PubMed ID: 30764758 [TBL] [Abstract][Full Text] [Related]
46. Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain. Madoz-Escande C; Henner P; Bonhomme T J Environ Radioact; 2004; 73(1):49-71. PubMed ID: 15001295 [TBL] [Abstract][Full Text] [Related]
47. Weather-dependent change of cesium, strontium, barium and tellurium contamination deposited as aerosols on various cultures. Madoz-Escande C; Santucci P J Environ Radioact; 2005; 84(3):417-39. PubMed ID: 15979215 [TBL] [Abstract][Full Text] [Related]
48. Radiocesium dynamics in fruit trees following the Chernobyl accident. Antonopoulos-Domis M; Clouvas A; Gagianas A Health Phys; 1991 Dec; 61(6):837-42. PubMed ID: 1955328 [TBL] [Abstract][Full Text] [Related]
49. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin. Ishibashi M; Yoshikawa H; Uno Y Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574483 [TBL] [Abstract][Full Text] [Related]
50. Improvement in Fruit Quality by Overexpressing miR399a in Woodland Strawberry. Wang Y; Zhang J; Cui W; Guan C; Mao W; Zhang Z J Agric Food Chem; 2017 Aug; 65(34):7361-7370. PubMed ID: 28783952 [TBL] [Abstract][Full Text] [Related]
51. Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Sánchez-Sevilla JF; Vallarino JG; Osorio S; Bombarely A; Posé D; Merchante C; Botella MA; Amaya I; Valpuesta V Sci Rep; 2017 Oct; 7(1):13737. PubMed ID: 29062051 [TBL] [Abstract][Full Text] [Related]
52. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. Mezzetti B; Landi L; Pandolfini T; Spena A BMC Biotechnol; 2004 Mar; 4():4. PubMed ID: 15113427 [TBL] [Abstract][Full Text] [Related]
53. Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins. Delgado LD; Zúñiga PE; Figueroa NE; Pastene E; Escobar-Sepúlveda HF; Figueroa PM; Garrido-Bigotes A; Figueroa CR Molecules; 2018 Jun; 23(6):. PubMed ID: 29899259 [TBL] [Abstract][Full Text] [Related]
54. [Present-day 90Sr and 137Cs contamination levels of soil and agricultural products in the East-Urals Radioactive Trace area]. Kazachenok NN; Popova IIa; Kostiuchenko VA; Mel'nikov VS; Usol'tsev DV Radiats Biol Radioecol; 2009; 49(3):324-9. PubMed ID: 19637741 [TBL] [Abstract][Full Text] [Related]
55. Erosion of atmospherically deposited radionuclides as affected by soil disaggregation mechanisms. Claval D; Garcia-Sanchez L; Réal J; Rouxel R; Mauger S; Sellier L J Environ Radioact; 2004; 77(1):47-61. PubMed ID: 15297040 [TBL] [Abstract][Full Text] [Related]
56. Computational identification of microRNAs in the strawberry (Fragaria x ananassa) genome sequence and validation of their precise sequences by miR-RACE. Han J; Li A; Liu H; Wen X; Zhao M; Korir NB; Korir NK; Wang C; Fang J Gene; 2014 Feb; 536(1):151-62. PubMed ID: 24333854 [TBL] [Abstract][Full Text] [Related]
57. Sensitivity analysis of ECOSYS-87: an emphasis on the ingestion pathway as a function of radionuclide and type of deposition. Hinton TG Health Phys; 1994 May; 66(5):513-31. PubMed ID: 8175358 [TBL] [Abstract][Full Text] [Related]
59. Behavior of 60Co and 134Cs in a Canadian Shield lake over 5 years. Bird GA; Schwartz WJ; Motycka M; Rosentreter J Sci Total Environ; 1998 Apr; 212(2-3):115-35. PubMed ID: 9573627 [TBL] [Abstract][Full Text] [Related]
60. Management methods of reducing radionuclide contamination of animal food products. Jones BE Sci Total Environ; 1993 Sep; 137():227-33. PubMed ID: 8248769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]